Prove that $\prod\limits_{1 \le k \le n-1,gcd(n,k)=1} \sin \frac{k \pi}{n}=\frac{1}{2^{\phi (n)}}$ where $n$ is not a power of a prime number.
My attempt:
$S=\prod\limits_{1 \le k \le n-1,gcd(n,k)=1} \sin \frac{k \pi}{n}=(2i)^{-\phi (n)}*\prod\limits_{1 \le k \le n-1,gcd(n,k)=1}(e^{\frac{ik \pi}{n}}-e^{\frac{-ik \pi}{n}})=(2i)^{-\phi (n)}*e^{-\sum\limits_{1 \le k \le n-1,gcd(n,k)=1} \frac{k \pi}{n}}*\prod\limits_{1 \le k \le n-1,gcd(n,k)=1} (e^{\frac{2ik \pi}{n}}-1)$
No we use thislemma and we have:
$S=(2i)^{- \phi (n)}*(-i)^{\phi(n)}*\prod\limits_{1 \le k \le n-1,gcd(n,k)=1} (e^{\frac{2ik \pi}{n}}-1)=(-2)^{- \phi (n)}*\prod\limits_{1 \le k \le n-1,gcd(n,k)=1} (e^{\frac{2ik \pi}{n}}-1)=2^{- \phi (n)}*\prod\limits_{1 \le k \le n-1,gcd(n,k)=1}(1-e^{\frac{2ik \pi}{n}})$
So it only remains to prove $\prod\limits_{1 \le k \le n-1,gcd(n,k)=1}(1-e^{\frac{2ik \pi}{n}})=1$.Which I can't do.My attempt was based on thisproblem but the rest can't be continued with that method.And also I don't know how to use $n$ not being power of a prime.