If I had an expression $|a+bi+\sqrt(c+di)|^{2}$, how would I evaluate this? I know how to evaluate the magnitude of a complex expression or the root of a complex expression separately but not when they are combined.
1 Answers
Well, when we have $\text{z}_1\space\wedge\space\text{z}_2\in\mathbb{C}$:
$$\text{D}:=\left|\text{z}_1+\sqrt{\text{z}_2}\right|\le\left|\text{z}_1\right|+\left|\sqrt{\text{z}_2}\right|=\left|\text{z}_1\right|+\sqrt{\left|\text{z}_2\right|}=$$ $$\sqrt{\Re^2\left(\text{z}_1\right)+\Im^2\left(\text{z}_1\right)}+\sqrt{\sqrt{\Re^2\left(\text{z}_2\right)+\Im^2\left(\text{z}_2\right)}}=$$ $$\sqrt{\Re^2\left(\text{z}_1\right)+\Im^2\left(\text{z}_1\right)}+\left(\Re^2\left(\text{z}_2\right)+\Im^2\left(\text{z}_2\right)\right)^\frac{1}{4}\tag1$$
And the square root of a complex number:
$$\sqrt{\text{z}_2}=\Re\left(\sqrt{\text{z}_2}\right)+\Im\left(\sqrt{\text{z}_2}\right)\cdot i\tag2$$
Where:
- $$\Re\left(\sqrt{\text{z}_2}\right)=\sqrt{\frac{\sqrt{\Re^2\left(\text{z}_2\right)+\Im^2\left(\text{z}_2\right)}+\Re\left(\text{z}_2\right)}{2}}\tag3$$
- $$\Im\left(\sqrt{\text{z}_2}\right)=\pm\space\sqrt{\frac{\sqrt{\Re^2\left(\text{z}_2\right)+\Im^2\left(\text{z}_2\right)}-\Re\left(\text{z}_2\right)}{2}}\tag4$$
So, when we want to find:
$$\text{D}=\sqrt{\Re^2\left(\text{z}_1+\sqrt{\text{z}_2}\right)+\Im^2\left(\text{z}_1+\sqrt{\text{z}_2}\right)}\tag5$$
Where:
- $$\Re\left(\text{z}_1+\sqrt{\text{z}_2}\right)=\Re\left(\text{z}_1\right)+\Re\left(\sqrt{\text{z}_2}\right)=$$ $$\Re\left(\text{z}_1\right)+\sqrt{\frac{\sqrt{\Re^2\left(\text{z}_2\right)+\Im^2\left(\text{z}_2\right)}+\Re\left(\text{z}_2\right)}{2}}\tag6$$
- $$\Im\left(\text{z}_1+\sqrt{\text{z}_2}\right)=\Im\left(\text{z}_1\right)+\Im\left(\sqrt{\text{z}_2}\right)=$$ $$\Im\left(\text{z}_1\right)\pm\space\sqrt{\frac{\sqrt{\Re^2\left(\text{z}_2\right)+\Im^2\left(\text{z}_2\right)}-\Re\left(\text{z}_2\right)}{2}}\tag7$$
- 29,457
unfortunately, this cannot be answered definitivelycaveat in the accepted answer to the linked question, and the reference to the principal value of the complex square root in my previous comment. Your question is not complete unless you spell out what the definition is for the $\sqrt{,\cdot,}$ complex square root being used. – dxiv Sep 19 '17 at 05:23