How do I prove that the following quantity is purely imaginary:
$$\sum_{0\leq l_1<l_2<l_3<l_4\leq q-1} e^{-2\pi i \frac{(l_1^2-l_2^2+l_3^2-l_4^2)}{q} } $$ where $q$ is an odd number?
How do I prove that the following quantity is purely imaginary:
$$\sum_{0\leq l_1<l_2<l_3<l_4\leq q-1} e^{-2\pi i \frac{(l_1^2-l_2^2+l_3^2-l_4^2)}{q} } $$ where $q$ is an odd number?