Let $f: \mathbb{R}^{2} \to \mathbb{R}$, where $f(x,y) = x^{2}+y^{3}$. Calculate $\nabla{f}$ in the new coordinate system $(r,\theta)$, where $$ x = r\cos{\theta}$$ $$ y = r\sin{\theta}$$
I know that $\nabla{f}$ is a covariant vector. How can I answer this in terms of $r$ and $\theta$