If the recurrence relation $r_{n+1}=r_n+r_{n-1}$ is used with starting values $r_0=1$ and $r_1=(1-\sqrt{5})/2$, what is the theoretically correct value of $r_n$ ($n\geq 2$)? Can the recurrence relation provide a stable means for computing $r_n$ in this case?
Answer: The general solution for the relation, $r_{n+1}=r_n+r_{n-1}$ is $$r_n=A\left(\dfrac{1+\sqrt{5}}{2}\right)^n+B\left(\dfrac{1-\sqrt{5}}{2}\right)^n.$$ We want to find the theoretically correct value of $r_n$, when $n\geq 2$, given $r_0=1$ and $r_1=(1-\sqrt{5})/2$.
With the starting values $r_0=1$ and $r_1=(1-\sqrt{5})/2$, we get the following system of equations: \begin{cases} 1=r_0=A+B \\ \dfrac{1-\sqrt{5}}{2}=r_1=A\left(\dfrac{1+\sqrt{5}}{2}\right)+B\left(\dfrac{1-\sqrt{5}}{2}\right) \end{cases}
Multiply the first equation by $\dfrac{1-\sqrt{5}}{2}$. \begin{cases} \dfrac{1-\sqrt{5}}{2}=r_0=A\left(\dfrac{1-\sqrt{5}}{2}\right)+B\left(\dfrac{1-\sqrt{5}}{2}\right) \\ \dfrac{1-\sqrt{5}}{2}=r_1=A\left(\dfrac{1+\sqrt{5}}{2}\right)+B\left(\dfrac{1-\sqrt{5}}{2}\right) \end{cases} Next, subtract equation (1) from equation (2), which results with $$0=A\left[\left(\dfrac{1-\sqrt{5}}{2}\right)-\left(\dfrac{1+\sqrt{5}}{2}\right)\right] \iff A=0.$$ Furthermore $B=1.$ Hence, the general solution for the relation is $$r_n =\left(\dfrac{1-\sqrt{5}}{2}\right)^n=r_1^n.$$
How do I determine whether or not the relation provides a stable means for computing $r_n$?