How to find all integer solutions (that is, $x,y,z \in Z$) to equation:
$$(x + y)(y + z)(x + z) = 13xyz$$
It is known that there are zero-value solutions, but how to find non-zero ones? Could anyone give some tips?
More updates:
It is hard to find all non-zero integer solutions, however, if we assume: $$\gcd(x,y)=\gcd(x,z)=\gcd(y,z)=1$$
it is very simple.
\begin{align*} 13xyz &= (x + y)(y + z)(x + z)\\ &= (x + y)(xy + xz + yz + z^2)\\ &= (x + y)[(xy + xz + yz) + z^2]\\ &= (x + y)(xy + xz + yz) + (x + y)z^2\\ &= (x + y)(xy + xz + yz) + z(xz + yz)\\ &= (x + y)(xy + xz + yz) + z(xy +xz+yz) - xyz\\ &= (x + y + z)(xy + xz + yz) - xyz\\ \iff (x + y + z)(xy + xz + yz) &= 14xyz\\ \implies xyz &| (x + y + z)(xy + xz + yz) \end{align*} Then $$\gcd(x,y)=\gcd(x,z)=1 \implies \gcd(x,yz)=1 \implies \gcd(x,xy + xz + yz)=1$$ Similarly, $$\gcd(y,xy + xz + yz) = \gcd(z,xy + xz + yz) = 1 \implies \gcd(xyz,xy + xz + yz) = 1.$$ However, as proved above, $$xyz | (x + y + z)(xy + xz + yz).$$ Therefore, $$xyz |(x + y + z) \implies |xyz| \le |x + y + z|.$$ Assume $|x| \le |y| \le |z|$. Then $|x|.|y|.|z| \le |x + y + z| \le 3|z| \implies |x|.|y| \le 3$.
So ${x, y} \in \{\pm 1, \pm 2, \pm 3\} $ and so we can enumerate the solutions.