Find out the determinant of the following matrix $$\begin{bmatrix}1^{2016} & 2^{2016} & \dots & 2018^{2016}\\2^{2016} & 3^{2016} & \dots & 2019^{2016} \\ \vdots & \vdots & \ddots & \vdots \\ 2018^{2016} & 2019^{2016} & \dots & 4035^{2016}\end{bmatrix}$$
Through examples of order $2\times 2$ as $\displaystyle \begin{bmatrix}1^0 & 2^0\\2^0 & 3^0\end{bmatrix}$ and $4\times 4$ as $$\displaystyle \begin{bmatrix}1^2 & 2^2 & 3^2 & 4^2\\2^2 & 3^2 & 4^2 & 5^2\\3^2 & 4^2 & 5^2 & 6^2\\4^2 & 5^2 & 6^2 & 7^2\end{bmatrix}$$ I found that in both case the answer is $0$. But I want to know the procedure to find such determinant.