0

It is my first time exposure to duality, and it bothers me that the book i'm using takes this theorem for granted and only says that it is a clear fact from truth tables.

I want to know Concrete and also abstract examples of duality and also how it relates to the concepts of "And" and "Or"?

1 Answers1

1

You can nicely see the duality between And and Or in the long list of pairs of equivalence principles involving them: every time some equivalence holds involving And and Or, there is always a dual principle that also holds when systematically swapping them:

Commutation

$P \land Q \Leftrightarrow Q \land P$

$P \lor Q \Leftrightarrow Q \lor P$

Association

$P \land (Q \land R) \Leftrightarrow (P \land Q) \land R$

$P \lor (Q \lor R) \Leftrightarrow (P \lor Q) \lor R$

DeMorgan

$\neg(P \land Q) \Leftrightarrow \neg P \lor \neg Q$

$\neg(P \lor Q) \Leftrightarrow \neg P \land \neg Q$

Distribution

$P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$

$P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$

Absorption

$P \land (P \lor Q) \Leftrightarrow P$

$P \lor (P \land Q) \Leftrightarrow P$

Reduction

$P \land (\neg P \lor Q) \Leftrightarrow P \land Q$

$P \lor (\neg P \land Q) \Leftrightarrow P \lor Q$

Adjacency

$P \Leftrightarrow (P \lor Q) \land (P \lor \neg Q)$

$P \Leftrightarrow (P \land Q) \lor (P \land \neg Q)$

Consensus

$(P \lor Q) \land (\neg Q \lor R) \land (P \lor R) \Leftrightarrow (P \lor Q) \land (\neg Q \lor R)$

$(P \land Q) \lor (\neg Q \land R) \lor (P \land R) \Leftrightarrow (P \land Q) \lor (\neg Q \land R)$

Bram28
  • 103,721