You can nicely see the duality between And and Or in the long list of pairs of equivalence principles involving them: every time some equivalence holds involving And and Or, there is always a dual principle that also holds when systematically swapping them:
Commutation
$P \land Q \Leftrightarrow Q \land P$
$P \lor Q \Leftrightarrow Q \lor P$
Association
$P \land (Q \land R) \Leftrightarrow (P \land Q) \land R$
$P \lor (Q \lor R) \Leftrightarrow (P \lor Q) \lor R$
DeMorgan
$\neg(P \land Q) \Leftrightarrow \neg P \lor \neg Q$
$\neg(P \lor Q) \Leftrightarrow \neg P \land \neg Q$
Distribution
$P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$
$P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$
Absorption
$P \land (P \lor Q) \Leftrightarrow P$
$P \lor (P \land Q) \Leftrightarrow P$
Reduction
$P \land (\neg P \lor Q) \Leftrightarrow P \land Q$
$P \lor (\neg P \land Q) \Leftrightarrow P \lor Q$
Adjacency
$P \Leftrightarrow (P \lor Q) \land (P \lor \neg Q)$
$P \Leftrightarrow (P \land Q) \lor (P \land \neg Q)$
Consensus
$(P \lor Q) \land (\neg Q \lor R) \land (P \lor R) \Leftrightarrow (P \lor Q) \land (\neg Q \lor R)$
$(P \land Q) \lor (\neg Q \land R) \lor (P \land R) \Leftrightarrow (P \land Q) \lor (\neg Q \land R)$