$$\sum\limits_{n=1}^{+\infty }{\left( -1 \right)^{n-1}\left( \psi _{1}\left( n \right) \right)^{2}}$$
Here is my procedure, but I do not know how to calculate the last integral. Anyone have any ideas?
$$\displaystyle{\psi _{1}\left( z \right)=-\int\limits_{0}^{1}{\frac{x^{z-1}\ln x}{1-x}dx}}$$
$$\displaystyle{\left( \psi _{1}\left( z \right) \right)^{2}=\left( -\int\limits_{0}^{1}{\frac{x^{z-1}\ln x}{1-x}dx} \right)\left( -\int\limits_{0}^{1}{\frac{y^{z-1}\ln y}{1-y}dy} \right)=\int\limits_{0}^{1}{\int\limits_{0}^{1}{\frac{\left( xy \right)^{z-1}\ln x\ln y}{\left( 1-x \right)\left( 1-y \right)}dxdy}}}$$
$$\displaystyle{\sum\limits_{n=1}^{+\infty }{\left( -1 \right)^{n-1}\left( \psi _{1}\left( n \right) \right)^{2}}=\sum\limits_{n=1}^{+\infty }{\left( \left( \psi _{1}\left( 2n-1 \right) \right)^{2}-\left( \psi _{1}\left( 2n \right) \right)^{2} \right)}}$$
$$\displaystyle{=\sum\limits_{n=1}^{+\infty }{\int\limits_{0}^{1}{\int\limits_{0}^{1}{\frac{\left( \left( xy \right)^{2n-2}-\left( xy \right)^{2n-1} \right)\ln x\ln y}{\left( 1-x \right)\left( 1-y \right)}dxdy}}}=\int\limits_{0}^{1}{\int\limits_{0}^{1}{\frac{\left( 1-xy \right)\ln x\ln y}{xy\left( 1-x \right)\left( 1-y \right)}\cdot \frac{\left( xy \right)^{2}}{1-\left( xy \right)^{2}}dxdy}}}$$
$$\displaystyle{=\int\limits_{0}^{1}{\int\limits_{0}^{1}{\frac{\ln x\ln y}{\left( 1-x \right)\left( 1-y \right)}\cdot \frac{xy}{1+xy}dxdy}}=-\frac{1}{6}\int\limits_{0}^{1}{\frac{6\text{Li}_{2}\left( -y \right)+\pi ^{2}y}{1-y^{2}}\ln ydy}}$$
$$\displaystyle{=-\frac{\pi ^{2}}{6}\int\limits_{0}^{1}{\frac{y}{1-y^{2}}\ln ydy}-\int\limits_{0}^{1}{\frac{\ln y\text{Li}_{2}\left( -y \right)}{1-y^{2}}dy}=\frac{\pi ^{2}}{6}\cdot \frac{\pi ^{2}}{24}-\int\limits_{0}^{1}{\frac{\ln y\text{Li}_{2}\left( -y \right)}{1-y^{2}}dy}}$$ ........................................................................... ¿?