The count can be organized as follows . . .
If a rank is at most $5$, call it a low rank.
If a hand contains the ranks $1,2,3,4,5$, call it a low hand.
Let
$\;\;{\small{\bullet}}\;\;x_0$ be the number of low hands with no low rank duplicated.
$\;\;{\small{\bullet}}\;\;x_1$ be the number of low hands with exactly one low rank duplicated.
$\;\;{\small{\bullet}}\;\;x_2$ be the number of low hands with two low ranks duplicated.
$\;\;{\small{\bullet}}\;\;x_3$ be the number of low hands with some low rank triplicated.
Then
$x_0 = {\large{{\binom{4}{1}}^5\binom{32}{2}}}=507904$.
$\qquad$Explanation:
$\qquad{\small{\bullet}}\;\;$Choose the $5$ low rank cards:
$\;{\binom{4}{1}}^5\;$choices.
$\qquad{\small{\bullet}}\;\;$Choose the $2$ remaining cards, not of low rank:
$\;{\binom{32}{2}}\;$choices.
$x_1 = {\large{\binom{5}{1}\binom{4}{2}{\binom{4}{1}}^4\binom{32}{1}}}=245760$.
$\qquad$Explanation:
$\qquad{\small{\bullet}}\;\;$Choose the duplicated low rank:
$\;\binom{5}{1}\;$choices.
$\qquad{\small{\bullet}}\;\;$Choose the $2$ cards for that rank:
$\;\binom{4}{2}\;$choices
$\qquad{\small{\bullet}}\;\;$Choose the other $4$ low rank cards:
$\;{\binom{4}{1}}^4\;$choices.
$\qquad{\small{\bullet}}\;\;$Choose the remaining card, not of low rank:
$\;\binom{32}{1}\;$choices.
$x_2 = {\large{\binom{5}{2}{\binom{4}{2}}^2{\binom{4}{1}}^3}}=23040$.
$\qquad$Explanation:
$\qquad{\small{\bullet}}\;\;$Choose the $2$ duplicated low ranks:
$\;\binom{5}{2}\;$choices.
$\qquad{\small{\bullet}}\;\;$Choose the $2$ cards for each of those ranks:
${\;\binom{4}{2}}^2\;$choices
$\qquad{\small{\bullet}}\;\;$Choose the other $3$ low rank cards:
$\;{\binom{4}{1}}^3\;$choices.
$x_3 = {\large{\binom{5}{1}\binom{4}{3}{\binom{4}{1}}^4}}=5120$.
$\qquad$Explanation:
$\qquad{\small{\bullet}}\;\;$Choose the triplicated low rank:
$\;\binom{5}{1}\;$choices.
$\qquad{\small{\bullet}}\;\;$Choose the $3$ cards for that rank:
$\;\binom{4}{3}\;$choices
$\qquad{\small{\bullet}}\;\;$Choose the other $4$ low rank cards:
$\;{\binom{4}{1}}^4\;$choices.
Then the total number of low hands is
$$x_0 + x_1 + x_2 + x_3 = 507904 + 245760 + 23040 + 5120 = 781824$$
In your count of$\;{\large{{\binom{4}{1}}^5\binom{47}{2}}}=1106944$,
$\qquad{\small{\bullet}}\;\;$Each $x_0$-type hand was counted correctly.
$\qquad{\small{\bullet}}\;\;$Each $x_1$-type hand was counted $2$ times.
$\qquad{\small{\bullet}}\;\;$Each $x_2$-type hand was counted $4$ times.
$\qquad{\small{\bullet}}\;\;$Each $x_3$-type hand was counted $3$ times.
As a check:
$$x_0 + 2x_1 + 4x_2+3x_3 = 507904 + (2)(245760) + (4)(23040) + (3)(5120) = 1106944$$
which was the count you obtained.