We prove instead the following Lemma. Using this Lemma, your claim follows by an immediate (strong) induction.
Lemma Let $a_1,.., a_k$ be complex numbers, not all of them zero, and $z_1,..,z_k$ non-zero, pairwise distinct complex numbers. If
$$a_1z_1^l+...+a_kz_k^l=0$$
for all odd integers $l$, then, there exists some $i\neq j$ such that
$$z_i+z_j=0$$
Proof:
Consider the determinant
$$\Delta=\begin{vmatrix}
z_1 & z_2 & z_3 &...&z_k \\
z_1^3& z_2^3 & z_3^3 &...&z_k^3 \\
z_1^5 & z_2^5 & z_3^5 &...&z_k^5 \\
...&...&...&....&... \\
z_1^{2k-1} & z_2^{2k-1} & z_3^{2k-1} &...&z_k^{2k-1} \\
\end{vmatrix}$$
First, since $a_1 \mbox{col 1}+...+a_k \mbox{col k}=0$ we get $\Delta=0$. Next, using the Vandermonde formula, we get
$$0=\Delta=z_1z_2...z_k\begin{vmatrix}
1 & 1 & 1 &...&1 \\
z_1^2& z_2^2 & z_3^2 &...&z_k^2 \\
z_1^4 & z_2^4 & z_3^4 &...&z_k^4 \\
...&...&...&....&... \\
z_1^{2k-2} & z_2^{2k-2} & z_3^{2k-2} &...&z_k^{2k-2} \\
\end{vmatrix}\\=z_1z_2..z_k \prod_{1 \leq i <j \leq k} (z_j^2-z_i^2)$$
It follows from the hypothesis that there exists some $i <j$ such that $z_j^2-z_i^2=0$ and hence $z_i+z_j=0$.