Remark(I):
At first notice that:
$\dfrac{3+\sqrt{9+4}}{2} \leq \dfrac{4+4}{2}=4$ ,
so for $4 \leq n$ we have:
$$0 \leq n^2-3n+1 \ \ \Longrightarrow \ \
3n^2+3n+2 \leq 4n^2+1 \ \ \Longrightarrow \ \
\\
\dfrac{3}{2}\Big(2n^2+2n+1 \Big) < 4n^2+1 \ \ \Longrightarrow \ \
\dfrac{3}{2}\Big(n^2+(n+1)^2 \Big) < 4n^2+1 .
$$
Remark(II):
On the other hand let $4 \leq m$, then we have:
$2 < (m-1)!$, i.e. $1 < \dfrac{(m-1)!}{2}$
multiplying both sides by $m$ we get:
$$m < \dfrac{m!}{2} \ \ \Longrightarrow \ \
m!+m < m!+ \dfrac{m!}{2} = \dfrac{3}{2} m! \ \ \ \ .
$$
Suppose on contrary that $4n^2+1 \in I_m $.
Now notice that sicce both of $n^2+(n+1)^2$ and $4n^2+1$
belongs to the interval $[m!+2,m!+m]$,
therefor we have:
$$ \ \ \ \ \ \ \ \ \ \ \ \ \
m! < m!+2 \leq n^2+(n+1)^2
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{(III)} \ ,
\ \ \ \ \ \ \ \ \ \ \ \text {and} \ \ \ \
\\
4n^2+1 \leq m!+m
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{(IV)} .$$
$\color{Red}{\text{First case}}$:
Let $m$ and $n$ are both greater or equal than $4$,
i.e. $4 \leq m$ and $4 \leq n$.
In this case we have:
$$\dfrac{3}{2} m!
\overset{ \tiny{ \text{III} } }{<}
\dfrac{3}{2}\Big(n^2+(n+1)^2 \Big)
\overset{ \tiny{ \text{Rmk(I)} } }{<}
4n^2+1
\overset{ \tiny{ \text{IV} } }{\leq}
m!+m
\overset{ \tiny{ \text{Rmk(II)} } }{<}
\dfrac{3}{2} m! \ \ \ \ ,
$$
so we have: $\dfrac{3}{2} m! < \dfrac{3}{2} m!$ ,which is an obvious contradiction. So this case is immpossible!
$\color{Red}{\text{Second case}}$:
Let $4 \leq m$ and $n \leq 3$.
In this case by the (III) inequality we have:
$$26=
4!+2
\leq
m! + 2
\overset{ \tiny{ \text{III} } }{\leq}
\Big(n^2+(n+1)^2 \Big)
\leq
9+16=25 \ ,
$$
which is again an obvious contradiction!
$\color{Red}{\text{Third case}}$:
Let $m \leq 3$ and $4 \leq n$.
In this case by the (IV) inequality we have:
$$265=
4.(4)^2+1
\leq
4n^2+1
\overset{ \tiny{ \text{IV} } }{\leq}
m!+m
\leq
3!+3=9 \ ,$$
which is again an obvious contradiction!
$\color{Red}{\text{Fourth case}}$:
Let $m \leq 3$ and $n \leq 3$.
In this case we have the following sub-cases:
$m=3$, then we have: $I_3=[8,9]=\{ 8, 9 \}$.
So $n^2+(n+1)^2=8$ or $n^2+(n+1)^2=9$, but none of them have a solution.
$m=2$, then we have: $I_2=[6,6]=\{ 6 \}$.
So $n^2+(n+1)^2=6$ , but it does'nt have a solution.
$m=1$, then we have: $I_1=[3,2]=\phi$.
At the end, it looks, that it was better; if I have been organized the cases as follows:
$\color{Green}{\text{First case}}$:
$\color{Yellow}{4 \leq m}$ and $4 \leq n$.
$\color{Green}{\text{Second case}}$:
$\color{Yellow}{4 \leq m}$ and $n \leq 3$.
$\color{Purple}{\text{Third case}}$:
$\color{Yellow}{m} \color{Orange}{\leq} \color{Yellow}{3}$