$\text {Prove that f is analytic if and only if}$ $\frac{\partial f}{\partial \overline{Z}}=0$
MY attempt:
suppose f is analytic $f(z)=u+iv \text{ then } u_x=v_y \text{ and } u_y=-v_x\\ \text{also } x=\frac{z+\overline{z}}{2},y=\frac{z-\overline{z}}{2i}\\ \frac{\partial f}{\partial z}=\frac{\partial f}{\partial x}\frac{\partial x}{\partial \overline{z}}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial \overline{z}}=0$
but to prove converse part of this statement