Find the inverse Fourier Transform of
$$ { F(\omega)=\frac{1}{2\pi(a+j\omega)^2} \ } $$ using the convolution theorem. Hint: the Fourier Transform of $e^{-at} u(t)=\frac{1}{\sqrt{2\pi}(a+j\omega)} $
Find the inverse Fourier Transform of
$$ { F(\omega)=\frac{1}{2\pi(a+j\omega)^2} \ } $$ using the convolution theorem. Hint: the Fourier Transform of $e^{-at} u(t)=\frac{1}{\sqrt{2\pi}(a+j\omega)} $
The convolution theorem gives us: $$\mathcal{F}^{-1}[\mathcal{F}(f)\cdot\mathcal{F}(g)]= f*g$$
From the hint: $$F(\omega) = \mathcal{F}(e^{-at}u(t))\cdot\mathcal{F}(e^{-at}u(t))$$ and you seek $\mathcal{F}^{-1}[F(\omega)]$.
Can you finish it?
Does this help?
– Tez LaCoyle Jul 28 '17 at 11:42