6

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ a continuous function with the property $f(x)=f(x+\frac{1}{\sqrt{n}}),\forall x \in \mathbb{R},\forall n \in \mathbb{N}$.Prove that $f$ is constant.

Here is my attempt:

Let $x \in \mathbb{R}$.

Firstly we notice that $\forall n \in \mathbb{N}$ we have $f(-\frac{1}{\sqrt{n}})=f(0)=f(\frac{1}{\sqrt{n}})$

From this we can deduce that $$f(\frac{m}{\sqrt{n}})=f(0),\forall n \in \mathbb{N},\forall m \in \mathbb{Z}$$

Now $x=\frac{x \sqrt{n}}{\sqrt{n}}$ and $x-\frac{1}{\sqrt{n}}=\frac{x \sqrt{n}-1}{\sqrt{n}} \leqslant \frac{[x \sqrt{n}]}{\sqrt{n}} \leqslant x$

The sequence $x_n=\frac{m_n}{\sqrt{n}} \rightarrow x$ where $m_n=[x\sqrt{n}]$

and $f(x_n)=f(0), \forall n \in \mathbb{N}$

From continuity by taking limits we have that $f(x)=f(0)$

Thus $f(x)=f(0),\forall x \in \mathbb{R}$ proving that $f$ is constant.

Is my argument correct?

If not can someone provide me a hint?

Thank you in advance!

1 Answers1

1

For every $r>0$ there exist integers $A,B$ with $0<A+B\frac {1}{\sqrt 2}<r.$

Let $x<y.$ Given $\epsilon >0,$ take $r\in (0,y-x)$ small enough that $z\in (y-r,y]\implies |f(z)-f(y)|<\epsilon.$ Take integers $A,B$ with $0<A+B\frac {1}{\sqrt 2}<r.$

Let $c=A+B\frac {1}{\sqrt 2}.$ There exists $n\in \mathbb N$ with $nc\leq y-x<(n+1)c.$ We now have $f(x)=f(x+nc)$ and $x+nc\in (y-r,y],$ so $|f(x)-f(y)|=|f(x+nc)-f(y)|<\epsilon.$

As $|f(x)-f(y)|<\epsilon$ for any $\epsilon >0 $, we have $f(x)=f(y).$

In general if $f:\mathbb R\to \mathbb R$ is continuous and periodic with non-zero periods $P_1,P_2$ where $P_1/P_2$ is irrational, then by the above method, $f$ is constant.