Let $A$ be an arc in the plane (so there is a homeomorphism $h:[0,1]\to A\subseteq \mathbb R ^2$).
Assume that $h(0)$ is the origin $o$ in the plane.
Say that a point $p\in A$ is a turning point if there is a neighborhood $U:=h[(a,b)]$ of $p$ such that $$\{p\}=U\cap B(o,\epsilon),$$ and either $U\subseteq \overline{B(o,\epsilon)}$ or $U\subseteq \mathbb R ^2\setminus B(o,\epsilon)$, where $\epsilon=d(o,p)$.
Let $T$ be the set of turning points in $A$.
Question: Is $\{\epsilon>0:T\cap \partial B(o,\epsilon)\neq\varnothing\}$ necessarily a countable set?
Easier Question: Does there exists $\epsilon>0$ such that $A\cap \partial B(o,\epsilon)\neq \varnothing$ and $T\cap \partial B(o,\epsilon)=\varnothing$?
