I've tried to solve this limit without success. Any good idea?
$$\lim_{x \to \infty} (x-1)\arctan (x)-\frac{\pi}{2}x$$
I've tried to solve this limit without success. Any good idea?
$$\lim_{x \to \infty} (x-1)\arctan (x)-\frac{\pi}{2}x$$
Note that $\lim_{x\to\infty}\arctan x=\frac{\pi}{2}$, so what you need to compute is $$ \lim_{x\to\infty}\Bigl(x\arctan x-\frac{\pi}{2}x\Bigr) $$ Note that, for $x>0$, $$ \arctan x+\arctan\frac{1}{x}=\frac{\pi}{2} $$ Use this identity and substitute $t=1/x$.
As noted by egreg, $\lim_{x\to\infty} \arctan(x)=\frac \pi 2$.
So, if you know L'Hopital's rule, you can rewrite your limit as
$$\lim_{x\to\infty}\left(\frac{\arctan(x)-\frac{\pi}{2}}{\frac1x}\right)-\lim_{x\to\infty}\arctan(x)]$$
and apply L'Hopital's rule to the first limit.