Let $B(H)$ the bounded linear functions on a Hilbert space $H$, endowed with the operator norm $\|T\|_{op}=\sup\limits_{\|h\|\le 1}\|T(h)\|_H$. We can write $\|T(h)\|_H^2=\langle T(h),T(h)_H\rangle$ for $h\in H$.
I have seen the equality $\|T\|_{op}=\sup\limits_{\|h\|\le 1}|\langle T(h),h\rangle |$ somewhere in a proof (for $T^*=T$), but I have no idea why this equality holds. How to prove $\|T\|_{op}=\sup\limits_{\|h\|\le 1}|\langle T(h),h\rangle |$? Thank you.