Assume $V$ is an inner product space over $\mathbb{R}$ with inner product $\left<\cdot,\cdot\right>$. Let $u_1,\cdots,u_n$ be a basis of $V$ and $v_1,\cdots,v_n$ be the dual basis, i.e., $\left<u_i,v_j\right> = \delta_{ij}$. Prove that if $\left<u_i,u_j\right>\leq 0$ for all $1\leq i < j \leq n$, then $\left<v_i,v_j\right>\geq 0$ for all $1\leq i < j \leq n$.
If we let $B=(b_{ij})$ be the matrix from basis $\{v_i\}$ to $\{u_i\}$, that is, $(u_1,\cdots,u_n) = (v_1,\cdots,v_n)B$, then $u_j = \sum_{i=1}^n b_{ij}v_i$, hence $\left< u_j, u_k \right> \leq 0$ and the duality imply $\left< u_j, u_k \right> = \left< \sum_{i=1}^n b_{ij}v_i, u_k \right> = \left< b_{kj}v_k, u_k \right> = b_{kj} \leq 0$ for $k\neq j$.
Now $(v_1,\cdots,v_n) = (u_1,\cdots,u_n) B^{-1}$, if we let $B^{-1} = (c_{ij})$ then $v_j = \sum_{k=1}^n c_{kj}u_k$, so $\left< v_i, v_j \right> = \left< v_i, \sum_{k=1}^n c_{kj}u_k \right> = \left< v_i, c_{ij}u_i \right> = c_{ij}$ for $i\neq j$.
Since $BB^{-1} = I_n$, we have $\sum_{k=1}^n b_{ik}c_{kj} = \delta_{ij}$. But it seems difficult to determine whether $c_{ij}\geq 0$ from this condition. How should I do next?