Let $s$ be a positive decreasing function, why does
$v s^{\leftarrow}(v) + \int_{s^{\leftarrow}(v)}^{\infty} s(u) \: \mathrm{d}u = \int_{0}^{v} s^{\leftarrow}(u) \: \mathrm{d}u \tag{*} $
hold? $s^{\leftarrow}(x)$ is here the generalized inverse function, so
\begin{align} s^{\leftarrow}(x)=\text{inf}\{y:s(y) \ge x \}. \end{align}
I know for $s^{-1}$ as the inverse function of $s$ and $S$ the antiderivative of $s$, we have
\begin{align} \int s^{-1} (u) \: \mathrm{d}u = us^{-1}(u) - S(s^{-1}(u)) + C. \tag{**} \end{align} If we have $s^{\leftarrow}$ as the inverse function and not just the generalized one, I see that $(**)$ implicates $(*)$, but with $s^{\leftarrow}$ as generalized inverse function, I don't see, why $s^{\leftarrow}(0)=\text{inf}\{y:s(y) \ge 0\}$ should be $\infty$.
I hope someone can help me out.
Sources: