Problem: Lets $X$ and $Y$ normed vector spaces $T:X\rightarrow Y$ a aplication such that $\Vert Tx-Ty \Vert = \Vert x-y \Vert$ for all $x,y \in X$ and $T(0)=0$ then T is a linear aplication.
My attempt: If I evaluate in $0$: $$\Vert Tx \Vert = \Vert x\Vert \quad \mbox{for all $x \in X$}$$ Then, $$\Vert T(x+y) \Vert = \Vert x+y\Vert \leq \Vert x\Vert + \Vert y\Vert = \Vert Tx\Vert+\Vert Ty\Vert$$ But, I do not know how to continue.