I got some homework in my school about matrix. These questions are seem so easy to solve but I always get stuck. Here they are:
- Let $A,B \in \mathbb{R}^{2017\times2017}$ matrices which satisfy the following equation. $$A^{-1} = (A+B)^{-1}-B^{-1}$$ and $\det(A^{-1})=2017.$ Find $\det(B)$.
My attempt:
\begin{equation*} \begin{split} (A+B)A^{-1} &= (A+B)\left[(A+B)^{-1}-B^{-1}\right] \quad \quad \text{multiplying both sides by (A+B)} \\ A^{-1}A +BA^{-1} &= (A+B)(A+B)^{-1}-(A+B)B^{-1} \\ I+BA^{-1} &= I - AB^{-1}-I\\ I+BA^{-1} &=-AB^{-1}\\ BA^{-1} +AB^{-1} +I&= O \end{split} \end{equation*} then I don't know how to continue.
2.Let $A,B\in \mathbb{R}^{2017 \times 2017}$ matrices which satisfy the equation $$AB^{2}-2BAB+B^{2}A=O$$ What is the largest eigenvalue of $AB-BA?$
$ABB+BBA=2BAB$
$ABB+BBA=BAB+BAB$
$ABB-BAB=BAB-BBA$
$(AB-BA)B=B(AB-BA)$
what is this means? I really need your thoughts, thanks in advance.