Use mathematical induction to prove the following:
For all $i$ starting from $1$ up to $N$, $i^3 =\frac{N^2(N + 1)^2}{4}$
Base Case:
$1 ^ 3 = 1^2(1 + 1)^2 / 4$
Conditions holds, so move onto general case.
Assume true for $N = k$
$1 ^ 3 + 2 ^ 3 + 3 ^ 3 + ... + (k)^3 = k^2(k+1)^2 / 4$
Prove for $k + 1$
$k^2(k+1)^2 / 4 + (k + 1)^3 = k + 1 ^2(k+2)^2/4$
LHS:
$= k^2(k+1)^2 + (k+1)^3(4)/4$
$= k^4 + 2k^3 + k^2 + (k+1)^3(4) / 4$
$= k^4 + 2k^3 + k^2 + 4k^3 + 12k^2 + 12k + 4 / 4$
$= k^4 + 6k^3 + 13k^2 + 12k + 4 / 4$
So I get to this point, but I don't know how to proceed. I'm confident that what I've done so far is completely wrong.