Lemma: $\sqrt{ab}\not\in\mathbb{Q}$
Proof: If $\sqrt{ab}\in\mathbb{Q}$, then $\frac1b\cdot\sqrt{ab}=\frac{\sqrt a}{\sqrt b}=\sqrt{\frac{a}b} \in \mathbb{Q}$, a contradiction. $\square$
Consider this answer. By the lemma, we have that $Q_i=\mathbb{Q}(a_i,b_i)$ has degree $4$ over $\mathbb{Q}$ and that $\beta_i=\{1,\sqrt{a_i},\sqrt{b_i},\sqrt{a_ib_i}\}$ is a basis for $Q_i$ over $\mathbb{Q}$.
Now, since $s=\sqrt{a_i}+\sqrt{b_i}\in Q_i$ for $i\in\{1,2\}$, we have
$${\left(1+s\right)}^2=\underbrace{(1+a_i+b_i)}_{\in\,\mathbb{Q}}+2\underbrace{(\sqrt{a_i}+\sqrt{b_i})}_s+\sqrt{a_ib_i}$$
and it follows that $\sqrt{a_1b_1}\in Q_2$ and vice-versa. With this, we can expand
\begin{align}
{(s+\sqrt{a_ib_i})}^2
&=(a_i+b_i+a_ib_i)+2\sqrt{a_ib_i}+2a_i\sqrt{b_i}+2b_i\sqrt{a_i}\\
&=\underbrace{(a_i+b_i+a_ib_i)}_{\in\,\mathbb{Q}}+2\underbrace{\sqrt{a_ib_i}}_{\in \,Q_1,Q_2}+2a_i\underbrace{(\sqrt{a_i}+\sqrt{b_i})}_{s\,\in\,Q_1,Q_2}+2(b_i-a_i)\sqrt{a_i}\tag{1}\\
\end{align}
and conclude that $\sqrt{a_1}\in Q_2$ and vice-versa. It follows that the same holds for the $b_i$ and hence $Q_1=Q_2$.
Let $v=(x,y,z,w)$ represent some element of $Q_2$ in the basis $\beta_2$. We have that, by hypothesis,
$$s=(0,1,1,0).$$
By expanding $s^2$, we find $a_1+b_1+2\sqrt{a_1b_1}=a_2+b_2+2\sqrt{a_2b_2}$, so
$$\sqrt{a_1b_1}=\left(\frac12\cdot (a_2+b_2-a_1-b_1),0,0,1\right).$$
One can check directly that
$$v^2=\Big(x^2+a_2y^2+b_2z^2+a_2b_2w^2,2(xy+zwb_2),2(xz+ywa_2),2(xw+yz)\Big).\tag{$*$}$$
Let $d=a_2+b_2-a_1-b_1$. Using $(*)$ on $(1)$, we find that
\begin{align}
2(b_1-a_1)\sqrt{a_1}
=&\left(\frac{d^2}4+a_2+b_2+a_2b_2,d+b_2,d+a_2,d+2\right)\\
-&(a_2+b_2+a_1b_1,2a_1,2a_1,2)\\
=&\left(\frac{d^2}4+a_2b_2-a_1b_1,a_2+2b_2-3a_1-b_1,2a_2+b_2-3a_1-b_1,d\right)
\end{align}
By applying $(*)$ above, we should get relations between the two representations of the number $4(b_1-a_1)^2a_1$ which may point out to the answer. I am running out of time right now but will check on this later.
$$\frac{s}{\sqrt{b}}=\sqrt{\frac{a_1}{b}}+1=\sqrt{\frac{a_2}{b}}+1,$$
so that $\sqrt{\frac{a_1}{b}}=\sqrt{\frac{a_2}{b}}\implies a_1=a_2$.
– Fimpellizzeri May 24 '17 at 16:01