Suppose $x\in \mathbb{R}^n$ and $\|.\|_2$ is the Euclidean norm. Is $e^{-\|x\|^2}$ Lipschitz? If so, what is the Lipschitz norm?
Here is my attempt:
$\big(e^{-\|x\|^2}-e^{-\|y\|^2}\big) \leq |\|x\|^2-\|y\|^2| = |\|x\|-\|y\||(\|x\|+\|y\|)\leq \|x-y\|(\|x\|+\|y\|)$
Do we need to define it on a compact set to make it Lipschitz?