I laid this shot that: $$\frac{1}{(2n-1)^2(2n+1)^2}=1/4\, \left( 2\,n+1 \right) ^{-2}-1/4\, \left( 2\,n-1 \right) ^{-1}+1/ 4\, \left( 2\,n-1 \right) ^{-2}+1/4\, \left( 2\,n+1 \right) ^{-1} $$ But I don't know what to do next. Help me please
How to find sum and convergence of series $\sum_{n = 1}^{\infty}\frac{1}{(2n-1)^{2}\cdot(2n+1)^{2}}$
-
you must compute the sum of These sumands – Dr. Sonnhard Graubner May 20 '17 at 13:13
-
@Dr.SonnhardGraubner And what to do when one series converged and the other one disconverged – May 20 '17 at 13:14
-
Note that the denominator is $$\Big((2n-1)(2n+1)\Big)^2 = (4n^2-1)^2$$ So your series can be written as $$\sum \frac1{(4n^2 - 1)^2}$$ – amWhy May 20 '17 at 13:15
-
@amWhy Thanks for a hint – May 20 '17 at 13:15
-
@amWhy Is it must help me? – May 20 '17 at 13:17
-
ok you will Need the partial sum,right? – Dr. Sonnhard Graubner May 20 '17 at 13:26
-
@Dr.SonnhardGraubner Yes) – May 20 '17 at 13:27
-
but the partial sum containes the Digamma function – Dr. Sonnhard Graubner May 20 '17 at 13:30
-
the infinite sum is given by $$\frac{1}{16} \left(\pi ^2-8\right)$$ – Dr. Sonnhard Graubner May 20 '17 at 13:32
-
@Dr.SonnhardGraubner Can you explained me about Digamma function? – May 20 '17 at 13:32
-
@Dr.SonnhardGraubner How did you count this, can you explain more detailed – May 20 '17 at 13:34
-
@Dr.SonnhardGraubner I found info about Digamma function, but I didn't understand this, can you explain it in my example? – May 20 '17 at 14:26
2 Answers
Note that:
$$\sum_{n=1}^\infty\frac1{(2n-1)^2}=1+\sum_{n=1}^\infty\frac1{(2n+1)^2}$$
$$\sum_{n=1}^\infty\frac1{2n-1}=1+\sum_{n=1}^\infty\frac1{2n+1}$$
Thus, your series reduces as follows:
$$\sum_{n=1}^\infty\frac1{(2n-1)^2(2n+1)^2}=-\frac12+\frac12\sum_{n=1}^\infty\frac1{(2n-1)^2}$$
Since everything cancels except that. Now let $S$ be the following sum:
$$S=\sum_{n=1}^\infty\frac1{n^2}=\frac{\pi^2}6$$
It can be seen that
$$S=\sum_{n=1}^\infty\left[\frac1{(2n-1)^2}+\frac1{(2n)^2}\right]=\frac14S+\sum_{n=1}^\infty\frac1{(2n-1)^2}$$
Thus,
$$\sum_{n=1}^\infty\frac1{(2n-1)^2}=\frac34S=\frac{\pi^2}8$$
and finally,
$$\sum_{n=1}^\infty\frac1{(2n-1)^2(2n+1)^2}=-\frac12+\frac12\left(\frac{\pi^2}8\right)=\frac{\pi^2-8}{16}$$
- 76,603
By partial fraction decomposition $$ \frac{1}{(2x-1)^2 (2x+1)^2} = \frac{\frac{1}{16}}{\left(x-\frac{1}{2}\right)^2}+\frac{\frac{1}{8}}{x-\frac{1}{2}}-\frac{\frac{1}{8}}{x+\frac{1}{2}}+\frac{\frac{1}{16}}{\left(x+\frac{1}{2}\right)^2} \tag{1}$$ hence it follows that: $$ \sum_{n\geq 1}\frac{1}{(2n-1)^2 (2n+1)^2}=\frac{1}{4}+\frac{1}{4}\sum_{n\geq 1}\frac{1}{(2n-1)^2}+\frac{1}{4}\sum_{n\geq 1}\frac{1}{(2n+1)^2} = \color{red}{\frac{\pi^2-8}{16}}\tag{2}$$
- 361,689
-
-
@J.Joshua: the value of the series $\sum_{n\geq 0}\frac{1}{(2n+1)^2}$ is well-known. – Jack D'Aurizio May 20 '17 at 16:53