Evaluate $$\delta^{i}_{j}\delta^{j}_{i}$$when $1\leq i,j \leq n$
Simplify $$\delta^{a}_{b}g_{ca}g^{bd}\delta^{c}_{d}$$ when $a,b,c,d\in \{1,2,...,n\}$
- in Einstein notation a matrix as a linear transformation is written as $$A=a^{i}_{j}$$ So $$\delta^{i}_{j}\delta^{j}_{i}=I$$ when I is the identity matrix. But on the other hand the index $j$ is used for summation so the answer will be $$\delta^{i}_{j}\delta^{j}_{i}=\delta^{i}_{i}+\delta^{i}_{i}+...+\delta^{i}_{i}(\text{n times})=1+1+...+1=n$$
What is the correct answer?
- $$\delta^{a}_{b}g_{ca}g^{bd}\delta^{c}_{a}=\delta_{b}g_{c}g^{b}\delta^{c}$$
How should I continue?