$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\int_{0}^{\pi/2}\expo{-\pi\tan\pars{t}/2}\,\dd t &
\,\,\,\stackrel{x\ =\ \tan\pars{t}}{=}\,\,\,
\int_{0}^{\infty}{\expo{-\pi x/2} \over x^{2} + 1}\,\dd x =
\Im\int_{0}^{\infty}{\expo{-\pi x/2} \over x - \ic}\,\dd x
\\[5mm] & =
\Im\int_{-\ic}^{\infty - \ic}{\expo{-\pi\ic/2}\expo{-\pi x/2} \over x}\,\dd x =
-\,\Re\int_{-\ic}^{\infty - \ic}{\expo{-\pi x/2} \over x}\,\dd x
\\[5mm] & \stackrel{\mrm{as}\ \epsilon\ \to\ 0^{+}}{\sim}
\Re\int_{\infty}^{\epsilon}{\expo{-\pi x/2} \over x}\,\dd x +
\Re\int_{0}^{-\pi/2}
{\epsilon\expo{\ic\theta}\ic\,\dd\theta \over \epsilon\expo{\ic\theta}} +
\Re\int_{-\epsilon}^{-1}{\expo{-\pi\ic y/2} \over \ic y}\,\ic\,\dd y
\\[5mm] & \stackrel{\mrm{as}\ \epsilon\ \to\ 0^{+}}{\sim}
-\int_{\pi\epsilon/2}^{\infty}{\expo{-x} \over x}\,\dd x -
\int^{\pi\epsilon/2}_{1}{\cos\pars{x} \over x}\,\dd y
\\[5mm] & \stackrel{\mrm{as}\ \epsilon\ \to\ 0^{+}}{\to}\,\,\,
\int^{\infty}_{\pi\epsilon/2}{\cos\pars{x} \over x}\,\dd y -
\int_{\pi\epsilon/2}^{\infty}{\expo{-x} \over x}\,\dd x -
\int^{\infty}_{\pi/2}{\cos\pars{x} \over x}\,\dd y
\\[5mm] & =
-\,\mrm{Ci}\pars{{\pi \over 2}\,\epsilon} -
\,\mrm{Ei}\pars{{\pi \over 2}\,\epsilon} + \,\mrm{Ci}\pars{\pi \over 2}
\label{1}\tag{1}
\end{align}
$\ds{\mrm{Ei}}$ is the
Exponential Integral Function.
Note that, as $\ds{z \to 0}$,
$\ds{\,\mrm{Ci}\pars{z} \sim \gamma + \ln\pars{z} + \,\mrm{O}\pars{z^{2}}}$ and
$\ds{\,\mrm{Ei}\pars{z} \sim -\gamma - \ln\pars{z} + \,\mrm{O}\pars{z^{1}}}$
such that \eqref{1} becomes
$$
\bbx{\int_{0}^{\pi/2}\expo{-\pi\tan\pars{t}/2}\,\dd t =
\,\mrm{Ci}\pars{\pi \over 2}}
$$