Let $(\Omega, \mathcal{F},P)$ be a probability space. If $X:\Omega\to\mathbb{R}^n$ is a random variable such that $E[|X|]<\infty$, and if $\mathcal{H}\subset\mathcal{F}$ is a $\sigma$-algebra, then the conditional expectation of $X$ given $\mathcal{H}$, denoted by $E[X|\mathcal{H}]$, is defined as the (a.s. unique) function from $\Omega$ to $\mathbb{R}^n$ satisfying:
(1) $E[X|\mathcal{H}]$ is $\mathcal{H}$-measurable
(2) $\int_HE[X|\mathcal{H}]dP=\int_HXdP$, for all $H\in\mathcal{H}$
Suppose that $Y:U\times \Omega\mapsto \mathbb{R}^n$ for some open subset $U\subset \mathbb{R}$. Further suppose that $Y$ is $C^1$ for a.a. $\omega\in\Omega$, and a random variable, i.e. $P$-measurable, for each $x\in U$. Assume also that $E[|Y(x,\cdot)|]<\infty$ for all $x\in U$.
Let $\mathcal G\subset \mathcal{F}$ be a sub-$\sigma$-algbebra.
How do we know
1) if $\frac{\partial}{\partial x} E[Y(x,\cdot)|\mathcal G]$ exists for each $x$ a.s.?
2) when $$\frac{\partial}{\partial x}E\left[Y(x,\cdot)|\mathcal G\right]= E\left [\frac{\partial}{\partial x}Y(x, \cdot)|\mathcal G\right]$$ a.s.?