In this wikipedia article, natural numbers are extracted from the infinite set which includes all the natural numbers as $\forall n(n\in N \Leftrightarrow ([n=\emptyset \lor \exists k(n=k\cup \{k\})]\land \forall m\in n[m=\emptyset \lor \exists k\in n (m=k\cup \{k\})]))$.
Let the extracted set be $N'$ and $n_1\in N'$.
- If $n_1\neq \emptyset$, $\exists n_2(n_1=n_2\cup \{n_2\}).$
- If $n_2\neq \emptyset, \exists n_3\in n_1(n_2 = n_3\cup \{n_3\}).$
- If $n_3\neq \emptyset, \exists n_4\in n_1(n_3= n_4\cup \{n_4\}).$
- ...
How to prove that this can't continue infinitely?