Let $h:[1, \infty)\rightarrow \mathbb R$ a continuous non-negative function, such that $\int_{1}^{\infty} h(x)\ dx$ converges. does $h$ must be bounded in $[1, \infty)$?
I tried to prove it by showing that if $\int_{1}^{\infty} h(x)\ dx$ converges, then by the definition the $\lim_{b \to \infty}\int_{1}^{b} h(x)\ dx$ exists. Can I conclude that from the existence of this limit, the function $h$ is bounded?
