2

Prove that the unit vectors in polar coordinates are related to those in rectangular coordinates by \begin{align*} \hat{r}&=\hat{x}\cos\phi+\hat{y}\sin\phi\\ \hat{\phi}&=-\hat{x}\sin\phi+\hat{y}\cos\phi. \end{align*} What are $\hat{x}$ and $\hat{y}$ in terms of $\hat{r}$ and $\hat{\phi}$?

DMcMor
  • 10,059
J. Hunt
  • 99
  • Multiply the first equation by $\sin \phi$ and the second equation by $\cos\phi$. Add them up. – CY Aries May 01 '17 at 04:31
  • So I ended up with $rsin \phi +\phi cos\phi=y$ and $rcos \phi - \phi sin \phi =x, $ but I fail to see how this proves the relation. – J. Hunt May 01 '17 at 05:16

2 Answers2

2

Another way to see the relation:

$\vec r=x\hat x+y\hat y$

$\hat r=\dfrac{\partial\vec r}{\partial r}/\left|\dfrac{\partial\vec r}{\partial r}\right|=\cos\phi\hat x+\sin\phi\hat y$$

$\hat\phi=\dfrac{\partial\vec r}{\partial\phi}/\left|\dfrac{\partial\vec r}{\partial\phi}\right|=(-r\sin\phi\hat x+r\cos\phi\hat y)/r=-\sin\phi\hat x+\cos\phi\hat y$

Rafa Budría
  • 7,552
0

$\hat{r}=\hat{x}\cos\phi+\hat{y}\sin\phi$ is a direct consequence of the unit circle definition of sine and cosine.

As $\hat{\phi}$ is the unit vector formed by rotating $\hat{r}$ through $90^\circ$,

\begin{align*} \hat{\phi}&=\hat{x}\cos(90^\circ+\phi)+\hat{y}\sin(90^\circ+\phi)\\ &=-\hat{x}\sin\phi+\hat{y}\cos\phi. \end{align*}

CY Aries
  • 23,788