Let $R$ be a commutative ring and $S \subset R$ a non empty subset with $0_R \notin S$, and such that $s_1, s_2 \in S$ implies $s_1 \cdot s_2 \in S$. Let $I$ be an ideal of $R$ with $I \cap S = \emptyset$, and such that if $J$ is an ideal which contains $I$ then either $J = I$, or $J \cap S \neq \emptyset$.
I am wondering how to show that $a \cdot b \in I \Rightarrow a \in I$ or $b \in I$.