I can't say I understand the context you gave behind your question, but I think most of your questions can be answered by a primer on Clifford algebras. One thing I want to point out is that I use the opposite sign convention from you.
When making $\mathbb{C}$, mathematicians adjoined a square root of negative one to $\mathbb{R}$. When making the quaternions $\mathbb{H}$, Hamilton adjoined a new square root of negative one, called $j$, to $\mathbb{C}$, and eventually determined that in order for the obvious choice of norm to be multiplicative we would need $k:=ij$ to be linearly independent of $1,i,j$ (thus jutting out in a fourth dimension) and for $i$ and $j$ to anticommute rather than commute (meaning $ij=-ji$).
Clifford algebras extend this idea. I call the Clifford algebra $C\ell(n)$ the free associative algebra generated by $n$ anticommuting square roots of negative one. If we call them $e_1,\cdots,e_n$ and let $v$ be any vector in their span, we easily compute $v^2=-\|v\|^2$ (where $\|\cdot\|^2$ comes from the standard basis here). This inspires a generalization: if $(V,q)$ is any quadratic space (so $q$ is a quadratic form on $V$, meaning $q(x)=b(x,x)$ for some symmetric bilinear form $b$), then $C\ell(V,q)$ is the tensor algebra on $V$ modulo (the two-sided ideal generated by) the relations $v\otimes v=-q(v)1$.
We usually only consider nondegenerate bilinear forms on a vector space. At the other extreme is the completely degenerate form which always equals $0$; this gives the algebra isomorphism $C\ell(V,0)\cong\Lambda V$, known better as the exterior algebra on $V$. Even if $q$ is not identically $0$, there is still always a canonical vector space isomorphism $\Lambda V\to C\ell(V,q)$, given by
$$ v_1\wedge \cdots\wedge v_k\mapsto v_1\cdots v_k $$
whenever $v_1,\cdots,v_k$ are orthogonal (meaning $b(v,w)=0$ or $q(v+w)=q(v)+q(w)$).
While the tensor algebra $TV$ is $\mathbb{N}$-graded, $C\ell(V)$ is not. Indeed, $v^2=-q(v)$ seems to lie in both the ostensible $2$ and $0$ graded components; in general, $C\ell(V)$ is only $\mathbb{Z}/2\mathbb{Z}$-graded: the even component are those elements expressible as a sum of products of evenly many vectors, and similarly for the odd component. This makes it something called a superalgebra. While $\Lambda V$ is supercommutative, $C\ell(V,q)$ isn't in general since odd elements commute with themselves.
Quadratic spaces together with quadratic-form-preserving linear maps as the morphisms form a category $\mathsf{QVect}$. It has a monoidal operation on it: $(V_1,q)\oplus(V_2,q_2)=(V_1\oplus V_2,q_1\oplus q_2)$, with quadratic form defined by $(q_1\oplus q_2)(v_1,v_2)=q_1(v_1)+q_2(v_2)$ (so it contains $V_1$ and $V_2$ as orthogonal subspaces). The assignment $(V,q)\mapsto C\ell(V,q)$ is functorial from $\mathsf{QVect}$ to $\mathsf{SAlg}$, the category of superalgebras. The latter category has its own monoidal operation, the super tensor product with $(a_1\otimes b_1)(a_2\otimes b_2)=\pm (a_1a_2\otimes b_1b_2)$ with $(-)$ sign if both $b_1,a_2$ are odd and $(+)$ sign otherwise inside $A\widehat{\otimes}B$. Then the $C\ell$ functor is actually monoidal;
$$ C\ell(V_1\oplus V_2,q_1\oplus q_2) \cong C\ell(V_1,q_1) ~\widehat{\otimes}~ C\ell(V_2,q_2). $$
Clifford algebras, like tensor products, satisfy a universal property. If $(V,q)$ is a quadratic vector space and $A$ is any algebra and we have a linear map $\phi:V\to A$ satisfying $\phi(v)^2=-q(v)1_A$, then it extends to an algebra homomorphism $C\ell(V,q)\to A$ (via $v_1\cdots v_k\mapsto \phi(v_1)\cdots\phi(v_k)$).
Sylvester's law of inertia classifies nondegenerate quadratic forms on real vector spaces according to an invariant called its signature $(p,q)$: there is a basis in which
$$ q(x)=x_1^2+\cdots+x_p^2-x_{p+1}^2-\cdots-x_{p+q}^2 . $$
We call the corresponding clifford algebra $C\ell(p,q)$ (there are other naming conventions too).
$\bullet$ Vacuously, $C\ell(0,0)=\mathbb{R}$.
$\bullet$ We already know $C\ell(1,0)=\mathbb{C}$,
$\bullet$ We already know $C\ell(2,0)=\mathbb{H}$,
$$ 1\leftrightarrow 1, \quad i\leftrightarrow e_1, \quad j\leftrightarrow e_2, \quad ij\leftrightarrow e_1e_2. $$
$\bullet$ What about $C\ell(0,1)$? This is $\mathbb{R}[x]/(x^2-1)\cong\mathbb{R}[x]/(x-1)\oplus\mathbb{R}[x]/(x+1)$ by the Chinese Remainder Theorem. If $C\ell(0,1)$ is generated by $f$ satisfying $f^2=1$, then $(1+f)(1-f)=0$ and one checks $(1\pm f)^2=2(1\pm f)$, so $(1\pm f)/2$ are orthogonal idempotents in which case
$$ a+bf = (a+b)\frac{1+f}{2}+(a-b)\frac{1-f}{2} \leftrightarrow (a+b,a-b) $$
establishing $C\ell(0,1)\cong\mathbb{R}^2$ (our notation for direct product of rings).
$\bullet$ How about $C\ell(1,1)$ generated by $e,f$ with $e^2=-1$, $f^2=+1$, $ef=-fe$? In this case,
$$ 1\leftrightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \phantom{f}e\leftrightarrow \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, $$
$$ f\leftrightarrow \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad ef\leftrightarrow \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, $$
establishing $C\ell(1,1)\cong\mathbb{R}(2)$ (common notation for $M_2(\mathbb{R})$ in the literature).
$\bullet$ And then $C\ell(0,2)$ generated by $f_1,f_2$ with $f_1^2=f_2^2=1$, $f_1f_2=-f_2f_1$. In this case,
$$ 1\leftrightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad f_1\leftrightarrow \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, $$
$$ f_2 \leftrightarrow \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \quad f_1f_2\leftrightarrow \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, $$
establishing $C\ell(0,2)\cong\mathbb{R}(2)$ as well.
So far, this is our table of Clifford algebras:
$$ \begin{array}{|c|c|c|c|c|} \hline (p,q) & ~~~0~~~ & 1 & 2 & ~~~3~~~ \\ \hline 0 & \mathbb{R} & \mathbb{R}^2 & \mathbb{R}(2) & \\ \hline 1 & \mathbb{C} & \mathbb{R}(2) & & \\ \hline 2 & \mathbb{H} & & & \\ \hline 3 \\ \hline \end{array} $$
At this point, we should look at (normal, nonsuper) tensor products of $\mathbb{R},\mathbb{C},\mathbb{H}$. The obvious cases are $\mathbb{R}\otimes\mathbb{K}\cong\mathbb{K}$ for each $\mathbb{K}$. The first nontrivial one is
$$\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C}=\mathbb{C}\otimes_{\mathbb{R}}\frac{\mathbb{R}[x]}{(x^2+1)} \cong \frac{\mathbb{C}[x]}{(x^2+1)} \cong \frac{\mathbb{C}[x]}{(x-i)}\oplus \frac{\mathbb{C}[x]}{(x+i)} \cong \mathbb{C}\oplus\mathbb{C}$$
by the Chinese Remainder Theorem. Indeed,
$$ 1\otimes 1\leftrightarrow (1,1), \quad i\otimes i\leftrightarrow (-1,1) \\ i\otimes 1\leftrightarrow (i,i), \quad 1\otimes i\leftrightarrow (i,-i) $$
establishes $\mathbb{C}\otimes\mathbb{C}\cong\mathbb{C}^2$ as algebras.
Now, $\mathbb{H}$ is a module over itself from both the left and the right, and these actions commute (this is the associative property, $a(xb)=(ax)b$), which induces a map $\mathbb{H}\otimes\mathbb{H}\to \mathbb{R}(4)$; I'll let you compute what this does to a basis (and thus by dimensions estasblihes an algebra isomorphism); I do a similar trick, regarding $\mathbb{H}$ as a right vector space over $\mathbb{H}$, here in order to establish the algebra isomorphism $\mathbb{H}\otimes\mathbb{C}\cong\mathbb{C}(2)$. Thus, we have this full table:
$$ \begin{array}{c||c|c|c} \otimes & \mathbb{R} & \mathbb{C} & \mathbb{H} \\ \hline \mathbb{R} & \mathbb{R} & \mathbb{C} & \mathbb{H} \\ \hline \mathbb{C} & \mathbb{C} & \mathbb{C}^2 & \mathbb{C}(2) \\ \hline \mathbb{H} & \mathbb{H} & \mathbb{C}(2) & \mathbb{R}(4) \end{array} $$
Moreover, we have $\mathbb{R}(n)\otimes\mathbb{K}\cong\mathbb{K}(n)$ for any algebra $\mathbb{K}$ (including $\mathbb{K}=\mathbb{R}^2$ and $\mathbb{H}^2$, for example, in which case e.g. $\mathbb{C}^2(n)\cong\mathbb{C}(n)^2$). I will assume you can figure out what these isomorphisms are.
For a general Clifford algebra $C\ell(p,q)$ generated by $e_1,\cdots,e_p$ (square roots of $-1$) and $f_1,\cdots,f_q$ (square roots of $+1$), all pairwise anticommuting, we may call $\omega=e_1\cdots e_p f_1\cdots f_q$ the orientation element (which element of the algebra this represents is actually independent of choice of basis for the vector space; it only depends on the orientation the basis induces on the space). Check
$$ \omega^2=\begin{cases} +1 & p-q\equiv 0,3 \mod4 \\ -1 & p-q\equiv 1,2 \mod 4 \end{cases} $$
Suppose we have quadratic spaces $(V_1,q_1),(V_2,q_2)$ and the orientation element $\omega$ of $C\ell(V_1,q_1)$ anticommutes with all $v_1\in V_1$ (so $\dim V_1$ is even). Consider the map
$$\phi:V_1\oplus V_2\to C\ell(V_1,q_1)\otimes C\ell(V_2,q_2)$$
(usual tensor product) given by extending
$$ v_1 \mapsto v_1\otimes 1 \\ v_2\mapsto \omega\otimes v_2 $$
Check this satisfies
$$ \begin{array}{ll} \phi(v_1,v_2)^2 & =(v_1\otimes 1+\omega\otimes v_2)^2 \\ & = v_1^2\otimes 1+v_1\omega\otimes v_2+\omega v_1\otimes v_2+\omega^2\otimes v_2^2 \\ & = (q_1+\omega^2q_2)(v_1,v_2).\end{array} $$
The universal property gives an algebra isomorphism $$C\ell(V_1\oplus V_2,q_1\oplus\omega^2q_2)\to C\ell(V_1,q_1)\otimes C\ell(V_2,q_2).$$
If we pick $(V_1,q_1)$ to have one of the signatures $(2,0),(1,1),(0,2)$ we get
$$ \begin{array}{l} C\ell(2,0) \otimes C\ell(r,s) \cong C\ell(s+2,r) \\ C\ell(1,1)\otimes C\ell(r,s)\cong C\ell(r+1,s+1) \\ C\ell(0,2)\otimes C\ell(r,s)\cong C\ell(s,r+2). \end{array} $$
(This is why it was important we worked out $C\ell(p,q)$ for $p+q\le 2$.) You should be able to use this to fill out the table of Clifford algebras for $0\le p,q\le 8$. If you do, you will notice some patterns.
For example, if you ignore the matrices part and just focus on scalars, they are $8$-periodic, proceeding $\mathbb{R},\mathbb{C},\mathbb{H},\mathbb{H}^2,\mathbb{H},\mathbb{C},\mathbb{R},\mathbb{R}^2$. (The "ignoring the matrices part" can be formalized using Morita equivalence.) John Baez calls this the "Clifford clock." Notice the axis of symmetry of this clock is offset by $1$; this is related to the fact the even subalgebra of $C\ell(p,q)$ is isomorphic to $C\ell(p-1,q)$, and spin representations thus use Clifford algebra representations from one less space dimension.
Anyway, that's a long enough answer for the classification I think.