Let
$$ l^2 = \left\{ (x_n) : \sum_{n=1}^{\infty} x_n^2 < \infty \right\} $$
equipped with the norm
$$ \| (x_n) \| = \left( \sum_{n=1}^{\infty} x_n^2 \right)^{1/2}. $$
I am wondering whether the following two subsets of $l^2$ are sequentially compact or not.
$\displaystyle \left\{ (x_n) \in l^2 : \sum_{n=1}^{k} x_n^2 \leq 1 \right\}$ where $k \in \mathbb{N}$ is fixed;
$\displaystyle \left\{ (x_n) \in l^2 : \sum_{n=1}^{\infty} x_n^2 \leq 1 \right\}$