Show that $$\prod\limits_{k=1}^n\left(1-\frac1{2k}\right)<\frac1{\sqrt{2n+1}}$$ for every $n\ge 1$, essentially without induction
My attempt:
Let say $n$ is odd integer.
$$\displaystyle\prod_{k=1}^n\left(1-\frac1{2k}\right)=\dfrac1{2^n}\displaystyle\prod_{k=1}^n\left(\dfrac{2k-1}{k}\right)=\dfrac1{2^n}\left(\dfrac{1.3.5.7.9...(2n-1)}{1.2.3.4...(n-1).n}\right)=U$$
Hence:
$$U=\dfrac1{2^n}\left(\dfrac{\overbrace{(n+2)(n+4)...(2n-1)}^{Y}}{\underbrace{1.2.4.6...(n-3)(n-1)}_T}\right)$$
Let analyse $T$ ;
$$T=1.2.4.6...(n-3)(n-1)=2^{\frac{n-1}{2}}\left(1.2.3...\left(\frac{n-3}2\right)\left(\frac{n-1}2\right)\right)=2^{\frac{n-1}{2}}\left(\frac{n-1}{2}\right)!$$
and;
$$U=\dfrac1{2^n.2^{\frac{n-1}{2}}}\dfrac{Y}{\left(\frac{n-1}{2}\right)!}<\dfrac{(2n-1)^{\frac{n-1}2}}{2^{\frac{3n-1}{2}}\left(\frac{n-1}{2}\right)!}<\dfrac1{\sqrt{8^n-1}}$$
I think, It's not enough. How should we approach this inequality?
Then again I don't know if that changes any working after that.
– John Doe Apr 16 '17 at 11:44