I need to show that this set is closed under matrix multiplication, is there a better way than doing it via a Cayley table? Or rather I assume there is and I just can't get my head around it. Any help would be greatly appreciated.
$\begin{gather*} M= \left\{ \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1\\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0\\ 0 & 1 \end{bmatrix} \right\}\\ \end{gather*}$
