Def'n: $[x,\to)=\{y:y\geq x\}.\quad$ $(x,\to)=\{y:y>x\}.\quad$ $ (\leftarrow,x]=\{y:y\leq x\}.\quad$ $ (\leftarrow,x)=\{y:y<x\}.$
Let $x\in X$ and $x\not \in A=\bar A\subset X.$
If the closed set $[x,\to)$ is open, let $L=[x,\to)$ and $L^*=(\leftarrow,x)$. If $[x,\to)$ is not open then take $y<x$ such that $A\cap [y,x]=\phi,$ and let $L=(y,\to)$ and $L^*=(\leftarrow,y).$
If the closed set $(\leftarrow,x]$ is open, let $U=(\leftarrow,x]$ and $U^*=(x,\to).$ If $(\leftarrow,x]$ is not open then take $z>x$ such that $A\cap [x,z]=\phi,$ and let $U=(\leftarrow,z)$ and $U^*=(z,\to).$
Let $C=L\cap U$ and $D=L^*\cup U^*.$ In all cases, $C$ and $D$ are open and disjoint, with $x\in C$ and $A\subset D. $