I break it down into two parts the numerator one into $\dfrac{n(n+1)(2n+1)}{ 6}$ but what should be summation of $n!$ ?
Asked
Active
Viewed 101 times
2 Answers
6
$$\sum_{n=1}^{\infty}\dfrac{n^2}{n!}=\sum_{n=1}^{\infty}\dfrac{n}{(n-1)!}=\sum_{n=1}^{\infty}\dfrac{n-1+1}{(n-1)!}=\sum_{n=1}^{\infty}\dfrac{n-1}{(n-1)!}+\sum_{n=1}^{\infty}\dfrac{1}{(n-1)!}$$
$$=\sum_{n=1}^{\infty}\dfrac{1}{(n-2)!}+\sum_{n=1}^{\infty}\dfrac{1}{(n-1)!}=e+e=2e$$
Jaideep Khare
- 19,551