Below is Exercise $3.6$ (p.$91$) of "Applied Partial Differential Equations" by Ockendon et al., $2^\mathrm{nd}$ ed.:
Show that, if $$\big(x+\alpha y\big)\dfrac{\partial^2 u}{\partial x^2} + \dfrac{\partial^2 u}{\partial y^2} = 0,\tag{1}\label{1}$$ where $\alpha\neq 0$, the characteristics are given by $$ \left( z\pm \alpha \right)^2 \mp 4\alpha z + 2\alpha^2\log\left(z\pm \alpha \right) + x = \operatorname{constant}, \tag{2}\label{2} $$ where $z^2 = x+\alpha y$. Show that, for small $z$, the characteristics through the origin are $$ \mp \big( x+\alpha y\big)^{\frac32} = \dfrac{3\alpha x}{2}. \tag{3}\label{3} $$ What happens if $\alpha =0$?
First, I do not see how did authors derive expression $\eqref{2}$ for characteristics. For example I tried to carry out proposed change of variables, but the results do not seem to agree with $\eqref{2}$:
Assuming $x$ and $y$ are independent, then the new variable $z = z\left(x,y\right)$ is given implicitly by $z^2 = x+\alpha y$. Differentiating the last expression w.r.t $x$ and $y$ yeilds $$\begin{aligned} \left\lbrace\begin{aligned} z_x = \frac{1}{2z} \\ z_y = \frac{\alpha}{2z} \end{aligned}\right. &\implies \left\lbrace\begin{aligned} \dfrac{\partial u}{\partial{x}} &= \frac{d u}{d z} \!\cdot\!\frac{\partial z}{\partial x} = \frac{1}{2}\frac{ u_z }{z} \\ \dfrac{\partial u}{\partial{y}} &= \frac{d u}{d z}\!\cdot\!\frac{\partial z}{\partial y} = \frac{\alpha}{2} \frac{ u_z }{z} \end{aligned}\right. \\ &\implies \left\lbrace\begin{alignedat}{4} \dfrac{\partial^2 u}{\partial{x^2}} &= \dfrac{\partial }{\partial{x}} \left(\dfrac{\partial u}{\partial{x}} \right) &&= \dfrac{\partial }{\partial{z}} \left(\frac{1}{2} \frac{ u_z }{z}\right) \!\cdot\!\dfrac{\partial z}{\partial x} = \dfrac12\dfrac{zu_{zz} - u_z}{z^2}\!\cdot\! \dfrac{1}{2z} = \dfrac{1}{4z}\dfrac{zu_{zz} - u_z}{z^2} \\ \dfrac{\partial^2 u}{\partial{y^2}} &= \dfrac{\partial }{\partial{y}} \left(\dfrac{\partial u}{\partial{y}} \right) &&= \dfrac{\partial }{\partial{z}} \left(\frac{\alpha}{2} \frac{ u_z } {z}\right) \!\cdot\!\dfrac{\partial z}{\partial y} = \dfrac\alpha2 \dfrac{zu_{zz} - u_z}{z^2}\!\cdot\! \dfrac{\alpha}{2z} = \dfrac{\alpha^2}{4z}\dfrac{zu_{zz} - u_z}{z^2} \end{alignedat}\right.\end{aligned}$$ In this way, assuming $u\left(x,y\right) = u\left(z\right)$ is the solution of $\eqref{1}$, $$\begin{alignedat}{7} z^2=x+\alpha y &\implies {\ \alpha^2 u_{xx} = u_{yy} = \alpha^2z^{-3} \left(zu_{zz} - u_z\right)/4}\\ \eqref{1} & \iff \big(x+\alpha y\big) u_{xx} + u_{yy} = \left(z^2+\alpha^2\right)u_{xx} = \dfrac{z^2+\alpha^2}{4z^3}\big(zu_{zz} - u_z\big) = 0 \\ & \implies u_z=zu_{zz}\implies u_z=Az\implies {u=Az^2+B=A\left(x+\alpha y\right)+B} \end{alignedat} $$
I appreciate any hint regarding where the expression $\eqref{2}$ comes from, as it bothers me most.
Second, can we assume $x\approx y\approx 0$ when talking about characteristics through origin, or does the phrase "for small $z$" imply $ x\approx -\alpha y$ only? Either way I do not see how to get $\eqref{3}$ from $\eqref{2}$.
Third, if $\alpha=0$ then $z^2 = x$. Wouldn't then $\eqref{2} \iff z^2 +x = c$ imply characteristics $x=\operatorname{const}$?