Since:
$$
f(x)=\ln\left(x+\sqrt{x^2+1}\right)=\text{arcsinh}\left(x\right)
$$
$$
\frac{\partial}{\partial x}f(x)=\frac{1}{\sqrt{1+x^2}}
$$
$$
\frac{\partial^2}{\partial x^2}f(x)=-\frac{x}{\sqrt{(1+x^2)^3}}
$$
$$
\frac{\partial^3}{\partial x^3}f(x)=\frac{2 x^2-1}{\left(x^2+1\right)^{5/2}}
$$
We have:
$$
f(x)=x-\frac{x^3}{6}+\mathcal{O}\left(x^4\right)
$$
I think the error is due to the chain rule:
$$
f(x)=f(x_{0})+\left(x-x_{0}\right)f'(x_{0})+\frac{1}{2}\left(x-x_{0}\right)^{2}f''(x_{0})+\mathcal{O}\left(\left(x-x_{0}\right)^{3}\right)
$$
$$
g(x)=g(x_{0})+\left(x-x_{0}\right)g'(x_{0})+\frac{1}{2}\left(x-x_{0}\right)^{2}g''(x_{0})+\mathcal{O}\left(\left(x-x_{0}\right)^{3}\right)
$$
So we have:
$$
f(g(x))=f(g(x_{0}))+\left(g(x)-g(x_{0})\right)f'(g(x_{0}))+\frac{1}{2}\left(g(x)-g(x_{0})\right)^{2}f''(x_{0})+\mathcal{O}\left(\left(g(x)-g(x_{0})\right)^{3}\right)=
$$
$$
=f(g(x_{0}))+\left(\left(x-x_{0}\right)g'(x_{0})+\frac{1}{2}\left(x-x_{0}\right)^{2}g''(x_{0})\right)f'(g(x_{0}))+
$$
$$
+\frac{1}{2}\left(\left(\left(x-x_{0}\right)g'(x_{0})+\frac{1}{2}\left(x-x_{0}\right)^{2}g''(x_{0})\right)\right)^{2}f''(g(x_{0}))+\mathcal{O}\left(\left(x-x_{0}\right)^{3}+\left(g(x)-g(x_{0})\right)^{3}\right)
$$