$$\mathbb{Q}(\alpha) , \quad \alpha=e^{2\pi i\over n}$$
$$\mathbb{Q}\left(\cos\left({2\pi \over n}\right)\right)=\mathbb{Q}(\alpha+\alpha^{-1}),\qquad \cos\left({2\pi \over n}\right)= {1 \over 2}(\alpha+\alpha^{-1})$$
My question:
I am experiencing some problems and I have questions that
$$\quad[\mathbb{Q}(\alpha) : \mathbb{Q}(\alpha+\alpha^{-1})]=2 $$
and
$$[\mathbb{Q}(\alpha ):\mathbb{Q}] = \left[\mathbb{Q}\left(\sin\left({2\pi \over n}\right)\right):\mathbb{Q}\right].$$
It is true? I can't prove that.