If $a-b=0\Longrightarrow b=0$ and $a-b$ is a perfect cube.
Also $a=0\Longleftrightarrow b=0$ and $a-b$ is a perfect cube.
Assume $a-b\ne0~\wedge~a\ne0~\wedge~b\ne0$.
Let's factorize $a^3+a^2+a=9b^3+b^2+b$.
$\begin{array}{rrcl}
& (a^3-b^3)+(a^2-b^2)+(a-b) & = & 8b^3\\
\Longrightarrow & (a-b)(a^2+ab+b^2)+(a-b)(a+b)+(a-b) & = & 8b^3\\
\Longrightarrow & (a-b)(a^2+b^2+ab+a+b+1) & = & (2b)^3\\
\Longrightarrow & (a-b)\big(a^2+b^2+a(b+1)+(b+1)\big) & = & (2b)^3\\
\Longrightarrow & \underbrace{(a-b)}_X\underbrace{\big(a^2+b^2+(a+1)(b+1)\big)}_Y & = & (2b)^3
\end{array}$
Define $d=\gcd(X,Y)$.
Suppose $d>1\Longrightarrow\exists p\in\mathbb{N}:p\mid d$ and $p$ is prime.
Suppose $p>2\Longrightarrow p\mid X\Longrightarrow p\mid8b^3\Longrightarrow p\mid b^3\Longrightarrow p\mid b$.
Then $p\mid X~\wedge~p\mid b\Longrightarrow p\mid a\Longrightarrow p\mid a^2~\wedge~p\mid b^2$.
Then $p\mid Y~\wedge~p\mid(Y-1)\Longrightarrow p\mid1$.
Contradiction because $p>1\Longrightarrow p=2~\vee~d=1$.
If $a$ and $b$ are either both even neither both odd, then $X$ is odd and $a^2+b^2$ is odd and $(a+1)(b+1)$ is even, then $Y$ is odd so $2\nmid d$, and that's a contradiction because $8\mid XY$.
So $a$ and $b$ have the same parity, then $2\mid X$.
Suppose both $a$ and $b$ are even, then $a^2+b^2$ is even and $(a+1)(b+1)$ is odd, then $Y$ is odd. So $\gcd(X,Y)=1$, then $a-b$ is a perfect cube (it's easy to prove it).
Suppose both $a$ and $b$ are odd, then $\gcd(X,Y)=2$.
Also $\gcd(X,b)=1$, since $X\mid8b^3\Longrightarrow X\mid8\Longrightarrow8\le|X|\le8$.
But $|X|\ne8$ otherwise $Y\mid b^3$ but $2\mid Y\Longrightarrow2\mid b$.
Contradiction because $2\nmid b\Longrightarrow|X|=2~\wedge~|X|=4$.
Note: From now, the exercise contains a lot of work of pick & spade.
Since $\gcd(X,b)=\gcd(a-b,b)=1\Longrightarrow\gcd(a,b)=1$ (It's easy to prove it).
We have $a^3+a^2+a=9b^3+b^2+b\Longrightarrow a(\underbrace{a^2+a+1}_A)=b(\underbrace{9b^2+b+1}_B)$
Then $a\mid B~\wedge~b\mid A$.
Let's define $f(x)=x^3+x^2+x$ and $g(x)=9x^3+x^2+x$, so we need $f(a)=g(b)$.
- First case: $a-b=2\Longrightarrow a=b+2~\wedge~b=a-2$.
$\begin{array}{rclcl}
A & = & a^2+a+1 & & \\
& = & (b+2)^2+(b+2)+1 & & \\
& = & b^2+4b+4+b+2+1 & & \\
& = & b^2+5b+7 & \Longrightarrow & b=\pm1~\vee~b=\pm7\\
B & = & 9b^2+b+1\\
& = & 9(a-2)^2+(a-2)+1\\
& = & 9a^2-36a+36+a-2+1\\
& = & 9a^2-35a+35 & \Longrightarrow & a=\pm1~\vee~a=\pm5~\vee~a=\pm7~\vee~a=\pm35
\end{array}$
Here are only two possible solutions $(a,b)\in\left\{(1,-1),(-5,-7)\right\}$.
But there are no solutions for this case because $\forall a,b:f(a)\ne g(b)$.
- Second case: $a-b=-2\Longrightarrow a=b-2~\wedge~b=a+2$.
$\begin{array}{rclcl}
A & = & a^2+a+1 & & \\
& = & (b-2)^2+(b-2)+1 & & \\
& = & b^2-4b+4+b-2+1 & & \\
& = & b^2-3b+3 & \Longrightarrow & b=\pm1~\vee~b=\pm3\\
B & = & 9b^2+b+1\\
& = & 9(a+2)^2+(a+2)+1\\
& = & 9a^2+36a+36+a+2+1\\
& = & 9a^2+37a+39 & \Longrightarrow & a=\pm1~\vee~a=\pm3~\vee~a=\pm13~\vee~a=\pm39
\end{array}$
Here are only three possible solutions $(a,b)\in\left\{(-1,1),(1,3),(-3,-1)\right\}$.
But there are no solutions for this case because $\forall a,b:f(a)\ne g(b)$.
- Third case: $a-b=4\Longrightarrow a=b+4~\wedge~b=a-4$.
$\begin{array}{rclcl}
A & = & a^2+a+1 & & \\
& = & (b+4)^2+(b+4)+1 & & \\
& = & b^2+8b+16+b+4+1 & & \\
& = & b^2+9b+21 & \Longrightarrow & b=\pm1~\vee~b=\pm3~\vee~b=\pm7~\vee~b=\pm21\\
B & = & 9b^2+b+1\\
& = & 9(a-4)^2+(a-4)+1\\
& = & 9a^2-72a+144+a-4+1\\
& = & 9a^2-71a+141 & \Longrightarrow & a=\pm1~\vee~a=\pm3~\vee~a=\pm47~\vee~a=\pm141
\end{array}$
Here are only three possible solutions $(a,b)\in\left\{(1,-3),(3,-1),(-3,-7)\right\}$.
But there are no solutions for this case because $\forall a,b:f(a)\ne g(b)$.
- Fourth case: $a-b=-4\Longrightarrow a=b-4~\wedge~b=a+4$.
$\begin{array}{rclcl}
A & = & a^2+a+1 & & \\
& = & (b-4)^2+(b-4)+1 & & \\
& = & b^2-8b+16+b-4+1 & & \\
& = & b^2-7b+13 & \Longrightarrow & b=\pm1~\vee~b=\pm13\\
B & = & 9b^2+b+1\\
& = & 9(a+4)^2+(a+4)+1\\
& = & 9a^2+72a+144+a+4+1\\
& = & 9a^2+73a+149 & \Longrightarrow & a=\pm1~\vee~a=\pm141
\end{array}$
Here are no possible solutions $(a,b)\in\left\{\right\}$.
But there are no solutions for this case because $\forall a,b:f(a)\ne g(b)$.
So it is proved.
PD: also I think $a=b=0$ is the unique (integer) solution for this equation, but I haven't proved this, what I proved is $a-b$ is a perfect cube and both $a$ and $b$ are even for all solutions to this equation.