Let $\left\{ x_{n}\right\} _{n}$ be a sequence. Define
$E_0=${$r\in\mathbb{R}$:$\lim_{k\rightarrow\infty}$ $x_{n_{k}}=r$}.
If $\left\{ x_{n}\right\} _{n}$ has a subsequence converging to $\pm \infty$ we add this to $E_0$ to obtain $E$. So,
$E=${$x\in\mathbb{R}\cup${$\pm \infty$}:$\lim _{k\rightarrow \infty }x_{n_{k}}=x$}.
Remark. If $\left\{ x_{n_{k}}\right\} _{k}$ is increasing then sup$_{k} $$x_{n_{k}}\in E$, if not inf$_{k}$ $x_{n_{k}}\in E$.
I couldn't understand this remark that can you explain more clearly?