Let $\gamma(s)$ be a curve in $\mathbb{R}^3$ parametrized by its arc length, with curvature and torsion not $0$. Let $f(s)=\mid\mid \gamma(s) - C(s_0) \mid \mid ^2-r(s_0)^2$, where $C(s_0)$ is the center of the osculator sphere and $r(s_0)$ is the radii of this sphere.
Suppose that $\ f(s_0)=f'(s_0)=f''(s_0)=f'''(s_0)=0$, and that $f^{(4)}(s_0)\neq0.$ Decide if $\gamma(s)$ cross the osculator sphere on $\gamma(s_0)$.
I really don't know how to attack this problem. I know that
$$C(s_0)=\gamma(s)+\frac{1}{k(s_0)}N(s_0)+\frac{k'(s_0)}{k(s_0)^2\tau(s_0)}B(s_0)$$
and
$$r(s_0)=\displaystyle\sqrt{\frac{1}{k(s_0)^2}+\Big(\frac{k'(s_0)}{k(s_0)^2\tau(s_0)}\Big)^2}$$
They're asking me to prove that the contact between the sphere and the curve is exactly $3$, but I don't know how to do it with no information about the curve.
What are the criterions to decide whether or not the curve crosses the sphere?
Thanks for your time.