0

Let $T$ be a linear map defined on a subspace $S$ of some Euclidean vector space $V$, such that $$ d(T(v_1),T(v_2))\leq d(v_1,v_2) \quad \text{for } v_1,v_2\in S $$ where $d(v_1,v_2)$ is the Euclidean distance on $V$. Is there always a linear map $T'$ defined on $V$ such that $$ d(T'(v_1),T'(v_2))\leq d(v_1,v_2) \quad \text{for all } v_1, v_2\in V $$ and that $T'(v)=T(v)$ for all $v\in S$?

NessunDorma
  • 1,069

1 Answers1

1

Yes, this is always possible in $\Bbb R^n$ (finite dimensional Euclidean space). In particular, we may note that $V = S \oplus S^\perp$, and so each $v \in V$ can be uniquely expressed as $v = v_S + v^\perp$ with $v_S \in S$ and $v_\perp \in S^\perp$. We may then define $$ T'(v) = T'(v_S + v^\perp) = T'(v_S) $$ Verify that this $T'$ satisfies the requirements given.

Ben Grossmann
  • 234,171
  • 12
  • 184
  • 355