We know that $\int_0^{\infty} \frac{1}{1+x^2} dx = \frac{\pi}{2}.$
(In fact, $F(x)= \int_0^{x} \frac{1}{1+t^2}dt = [\arctan (t)]_0^{x}$, and so $\lim_{x\to \infty} F(x) = \frac{\pi}{2}.$)
Let $p \in \{2,3,4\}, n\in \mathbb N$
How should I evaluate $\int_0^{\infty} \frac{x^{p}}{(1+x^2)^3} dx$? What is $\int_0^{\infty} \frac{(x-n)^{p}}{(1+(x-n)^2)^3} dx$?