Notation.
$\blacksquare_n -\;$ unzero moves (index means the move number);
$\square_n -\;$ zero moves;
$\triangledown -\;$ threat of zero move;
$\bowtie -\;$ - the field under mutual zugzwang (counter-threats).
Idea of the such notation partially is taken from the literature of the game "go".
$\color{brown}{\textbf{Elements of the strategy.}}$
From the properties of the matrix $\;S\times S\;$ determinant follows the next.
- Allowed matrix transformations, which hold zero/unzero determinant status:
- transposition of the matrix;
- pairwize or cyclic permutations of the rows (columns);
- order decreasing (OD), i.e. elimination of the pair "row+column", if the intersection element is the single unzero one in the filled row (column) and the quantity of undefined elements on the other line in the pair is even (if odd, then one such element
should be hold to control the last move parity);
- matrix splitting (MS), by the identity
$$
\begin{align}
\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1m} & b_{11} & b_{12} & \cdots & b_{1n} \\
a_{21} & a_{22} & \cdots & a_{2m} & b_{21} & b_{22} & \cdots & b_{2n} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
a_{m1} & a_{m2} & \cdots & a_{mm} & b_{m1} & b_{m2} & \cdots & b_{mn} \\
0 & 0 & \cdots & 0 & c_{11} & c_{12} & \cdots & c_{1n} \\
0 & 0 & \cdots & 0 & c_{21} & c_{22} & \cdots & c_{2n} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0 & c_{n1} & c_{n2} & \cdots & c_{nn} \\
\end{vmatrix}\\[8pt]
=\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1m} \\
a_{21} & a_{22} & \cdots & a_{2m} \\
\cdots & \cdots & \cdots & \cdots \\
a_{m1} & a_{m2} & \cdots & a_{mm}
\end{vmatrix}
\cdot\begin{vmatrix}
c_{11} & c_{12} & \cdots & c_{1n} \\
c_{21} & c_{22} & \cdots & c_{2n} \\
\cdots & \cdots & \cdots & \cdots \\
c_{n1} & c_{n2} & \cdots & c_{nn} \\
\end{vmatrix}\end{align}\tag1
$$
- Zero discriminant conditions, which are the threats of Z-gamer (Bob):
- zero row or column;
- MS by $(1),$ where $\;m+n > S\;$
- a pair of the proportional rows(columns).
Unzero discriminant condition is unzero sum of unzero terms. The threat of NZ-gamer (Alice) is to get and hold unzero terms combination.
Last move:
- NZ-gamer, if the matrix dimension is odd (odd case);
- Z-gamer, if the matrix dimension is even (even case).
$\qquad$ Therefore, Z-gamer wins the mutual zugzwang positions only in the even case.
- Preferable moves of Z-gamer:
- The second zero in the same row or column ("$\square 21$"- placing) holds $\;(S-2)(S-1)!\;$ unzero terms of on $\;S\times S\;$ matrix, when the alternative moves ("$2\square11$" - placing) hold $\;(S-1)(S-1)!.$
- If the first and the second zeros are placed in one row, then the third move in the same row ("$\square31$" - placing) holds $\;(S-3)(S-1)!\;$ terms, when the placing in the vertices of a right triangle ("$\triangle22$" - placing) holds $\;(S-2)^2(S-2)!\;$ terms.
- At the next, placing ("$\square41$") holds $\;(S-4)(S-1)!\;$ terms, placing ("$\square22$") holds $\;(S-3)(S-2)(S-2)!\;$ terms, and placing ("$\triangle32$") also holds $\;(S-3)(S-2)(S-2)!\;$ terms,
\begin{vmatrix}
\text{Placing} & \text{Terms hold} & S=2 & S=3 & S=4 & S=5 & S=6 & S=7 \\
2\square11 & (S-1)(S-1)! & 1 & 4 & 18 & 96 & 600 & 4320 \\
\square21 & (S-2)(S-1)! & 0 & 2 & 12 & 72 & 480 & 3600 \\
\triangle22 & (S-2)^2(S-2)! & 1 & 1 & 8 & 54 & 384 & 3000 \\
\square31 & (S-3)(S-1)! & - & 0 & 6 & 48 & 360 & 2880 \\
\square22 & (S-3)(S-2)(S-2)! & 0 & 0 & 4 & 36 & 288 & 2400 \\
\triangle32 & (S-3)(S-2)(S-2)! & - & 0 & 4 & 36 & 288 & 2400 \\
\square41 & (S-4)(S-1)! & - & - & 0 & 24 & 240 & 2160
\end{vmatrix}
- Preferable moves of NZ-gamer:
- creating of the first unzero term (unzero moves to the intersections of the lines without unzero elements with the highest quantity of zeros) and elimination of the others (by the previous item).
Then we should collect the patterns with the predefined result.
$\color{brown}{\mathbf{2\times2\; matrices.}}$
- $
P_{20}=\begin{vmatrix} \centerdot & \centerdot \\ \centerdot & \centerdot \end{vmatrix}; \quad
\color{brown}{\mathbf{
P_{20}\big|_{NZ}\Rightarrow
\begin{vmatrix}\blacksquare_1 & \triangledown \\ \triangledown & \square_2 \end{vmatrix}_{NZ}\Rightarrow Z\uparrow;}}\quad;
P_{20}\big|_Z\Rightarrow
\begin{vmatrix}\square_1 & \triangledown \\ \triangledown & \centerdot \end{vmatrix}_{NZ}\Rightarrow Z\uparrow.
$
Zero-moves of Z-gamer ($\square_1,\square_2$) create two threats ($\triangledown$), despite the first unzero move ($\blacksquare_1$) of NZ-gamer.
Result: $\color{brown}{\textbf{Force win of Z-gamer}},$ independently of the moves order.
- $P_{21}=
\begin{vmatrix} \blacksquare & \triangledown \\ \triangledown & \blacksquare \end{vmatrix}\Rightarrow NZ\uparrow.$
NZ-gamer eliminates the second term and holds unzero term.
- $P_{22} = \begin{vmatrix} \blacksquare & \blacksquare \\ \bowtie & \bowtie \end{vmatrix}; \quad
P_{22}\big|_{NZ}\Rightarrow Z\uparrow,\quad P_{22}\big|_{Z}\Rightarrow NZ\uparrow.$
Mutual zugzwang (MZZ) position.
Each player has the pair of the counterthreats ($\bowtie$), which allow him to control result.
If Z-player has the last move, he can provide the rows collinearness.
$\color{brown}{\mathbf{3\times3\;matrices.}}$
$P_{30} =\begin{vmatrix}\centerdot & \centerdot & \centerdot \\ \centerdot & \centerdot & \centerdot \\ \centerdot & \centerdot & \centerdot \end{vmatrix},\quad
P_{30}\big|_{Z} =\begin{vmatrix}\square_1 & \triangledown & \centerdot \\ \triangledown & \centerdot & \centerdot \\ \centerdot & \centerdot & \centerdot \end{vmatrix}_{NZ}\Rightarrow
\begin{cases}
(A)\begin{vmatrix} \diagup\hspace{-14mu} \square_1 & \blacksquare_2 & \triangledown \\ \diagup\hspace{-14mu} \square_3 & \triangledown & \square_5 \\ \diagup\hspace{-14mu}\blacksquare_4 & - & - \end{vmatrix}\Rightarrow Z\uparrow\\[8pt]
(B)\begin{vmatrix} \diagup\hspace{-14mu}\square_1 & \diagup\hspace{-14mu}\square_3 & \diagup\hspace{-14mu} \mathbf \blacksquare_4 \\
\triangledown & \blacksquare_2 & | \\
\square_5 & \triangledown & | \end{vmatrix}\Rightarrow Z\uparrow.
\end{cases}$
The first move of Z-gamer ($\square_1$) creates two complex threats ($\triangledown$):
after such move and the obvious answer at the rest field of the row (column), takes place OD to position $P_{20}\big|_{NZ}$.
Result: Z-gamer starts and wins.
$\color{brown}{\mathbf{P_{30}\big|_{NZ} \Rightarrow
\begin{vmatrix}
\blacksquare_1 & \bullet & \bullet \\
\centerdot & \square_2 & \bullet
\\ \centerdot & \centerdot & \bullet \end{vmatrix}_{NZ}\Rightarrow
\begin{cases}
(A)\begin{vmatrix}\blacksquare_1 & \blacksquare_5 & \blacksquare_9 \\
\square_8 & \square_2 & \blacksquare_3 \\
\square_6 & \square_4 & \blacksquare_7 \end{vmatrix},\quad
(B)\begin{vmatrix}\blacksquare_1 & \blacksquare_7 & \blacksquare_9 \\
\square_4 & \square_2 & \blacksquare_5 \\
\square_8 & \square_6 & \blacksquare_3 \end{vmatrix}\Rightarrow Z\uparrow;\\[8pt]
(C)\begin{vmatrix}\blacksquare_1 & \blacksquare_3 & \blacksquare_7 \\
\blacksquare_5 & \square_2 & \square_4 \\
\blacksquare_9 & \square_8 & \square_6 \end{vmatrix},\quad
(D)\begin{vmatrix}\blacksquare_1 & \blacksquare_5 & \blacksquare_3 \\
\blacksquare_7 & \square_2 & \square_6 \\
\blacksquare_9 & \square_4 & \square_8 \end{vmatrix}
\Rightarrow Z\uparrow.\end{cases}}}$
Result: NZ-gamer starts, Z-gamer achieves a forced win in the all variants due to threats of $\;\square31\;$ and the final placing $\;\square22.$
$P_{31} = \begin{vmatrix} \blacksquare & \bullet & \bullet \\
\centerdot & \blacksquare & \bullet \\
\centerdot & \centerdot & \square \end{vmatrix}, \quad P_{31}\big|_{NZ} \Rightarrow
\begin{cases}
(A)\begin{vmatrix} \!\blacksquare\; & \bowtie & \bowtie \\
\square_4 & \!\blacksquare\; & \blacksquare_1 \\
\blacksquare_3 & \square_2 & \!\square\; \end{vmatrix},\quad
(B)\begin{vmatrix} \!\blacksquare\; & \square_4 & \blacksquare_1 \\
\bowtie & \!\blacksquare\; & \bowtie \\
\square_2 & \blacksquare_3 & \!\square\; \end{vmatrix}\Rightarrow \text{MZZ};\\[8pt]
(C)\begin{vmatrix} \!\blacksquare\; & \blacksquare_1 & \blacksquare_5 \\
\square_6 & \!\blacksquare\; & \square_4 \\
\square_2 & \blacksquare_3 & \!\square\; \end{vmatrix}\Rightarrow Z\uparrow.
\end{cases}$
If NZ-player starts, then Z-player in the best case can achieve mutual zugzwang, and NZ-player wins.
If Z-player starts or NZ-player chooses the bad move (variant C), then Z-player wins the position.
$\color{brown}{\mathbf{4\times4\;matrices.}}$
$P_{40} =\begin{vmatrix}\centerdot & \centerdot & \centerdot & \centerdot \\
\centerdot & \centerdot & \centerdot & \centerdot \\
\centerdot & \centerdot & \centerdot & \centerdot \\
\centerdot & \centerdot & \centerdot & \centerdot \end{vmatrix},\quad
P_{40}\big|_{NZ} \Rightarrow
P_{41} =\begin{vmatrix}
\blacksquare_1 & \square_2 & \bullet & \centerdot \\
\bullet & \bullet & \bullet & \centerdot \\
\centerdot & \centerdot & \centerdot & \centerdot \\
\centerdot & \centerdot & \centerdot & \centerdot \end{vmatrix},\quad
P_{42} =\begin{vmatrix}
\blacksquare_1 & \bullet & \bullet & \centerdot \\
\centerdot & \square_2 & \bullet & \centerdot \\
\centerdot & \centerdot & \bullet & \centerdot \\
\centerdot & \centerdot & \centerdot & \centerdot \end{vmatrix},\quad
$
$P_{41AB} =\begin{vmatrix}
\blacksquare_1 & \square_2 & \scriptsize\blacksquare_3 & \centerdot \\
\scriptsize\blacksquare_3 & \square_4 & \centerdot & \centerdot \\
\centerdot & \triangledown & \centerdot & \centerdot \\
\centerdot & \triangledown & \centerdot & \centerdot \end{vmatrix}
\Rightarrow Z\uparrow (\text{OD}),\quad
P_{41C} =\begin{vmatrix}
\blacksquare_1 & \square_2 & \centerdot & \blacksquare_{\small\text B} \\
\bowtie & \blacksquare_9 & \blacksquare_3 & \square_8 \\
\square_{\small\text C} & \square_4 & \blacksquare_7& \square_6 \\
\bowtie & \blacksquare_5 & \centerdot & \square_{\small\text A} \end{vmatrix}
= Z\uparrow (\text{OD,MZZ}),
$
$
P_{41D} =\begin{vmatrix}
\blacksquare_1 & \square_2 & \centerdot & \blacksquare_9\\
\bowtie & \blacksquare_3 & \square_{\small\text A} & \square_8 \\
\bowtie & \blacksquare_7 & \square_4 & \square_6\\
\centerdot & \centerdot & \blacksquare_5 & \centerdot \end{vmatrix},\quad
=\begin{vmatrix} \bowtie & \blacksquare_3 \\
\bowtie & \blacksquare_7 \end{vmatrix}
\begin{vmatrix} \centerdot & \blacksquare_9\\
\blacksquare_5 & \centerdot \end{vmatrix} \Rightarrow Z\uparrow (\text{MS,MZZ}),
$
etc.
Easily to see, that the tactic achievements of NZ-player crushes on the mutual zugzwang.
$\color{brown}{\mathbf{5\times5\;matrices.}}$
$
P_{50}\big|_{NZ} =\begin{vmatrix}
\centerdot & \centerdot & \centerdot & \centerdot & \centerdot \\
\centerdot & \centerdot & \centerdot & \centerdot & \centerdot \\
\centerdot & \centerdot & \centerdot & \centerdot & \centerdot \\
\centerdot & \centerdot & \centerdot & \centerdot & \centerdot \\
\centerdot & \centerdot & \centerdot & \centerdot & \centerdot
\end{vmatrix}\big|_{NZ}\Rightarrow
\begin{vmatrix}
\blacksquare_1 & \centerdot & \centerdot & \centerdot & \centerdot \\
\centerdot & \square_2 & \blacksquare_3 & \blacksquare_9 & \centerdot \\
\centerdot & \square_4 & \centerdot & \square_6 & \blacksquare_7 \\
\centerdot & \blacksquare_5 & \centerdot & \centerdot & \centerdot \\
\centerdot & \bowtie & \bowtie & \square_8 & \centerdot
\end{vmatrix}\Rightarrow NZ\uparrow (\text{MZZ}).
$
NZ-player wins, due to the last move and essentially greater choice of the useful moves.
Should expect, that the considered factors should hold, and the last move provides the victory, if $\;\mathbf{S>3.}$