I would like to have help with solving this limit problem:
$$ \lim_{n\to\infty}\ (3^n+4^n)^{\frac{1}{n}}\ . $$
the answer is 4
I tried using all the tools I learned but nothing gets me to the answer.
thank you, any insight will be helpful.
I would like to have help with solving this limit problem:
$$ \lim_{n\to\infty}\ (3^n+4^n)^{\frac{1}{n}}\ . $$
the answer is 4
I tried using all the tools I learned but nothing gets me to the answer.
thank you, any insight will be helpful.
Using Squeeze Theorem
$$4^n<3^n+4^n <4^n+4^n$$
So $$\lim_{n\rightarrow \infty}(4^n)^{\frac{1}{n}}<\lim_{n\rightarrow \infty}\left(3^n+4^n\right)^{\frac{1}{n}}<\lim_{n\rightarrow \infty} 2^{\frac{1}{n}}(4^n)^{\frac{1}{n}}$$
Apply Squeeze Theorem,
$$\lim_{n\rightarrow \infty}\left(3^n+4^n\right)^{\frac{1}{n}} = 4$$
Alternate:
$$\lim_{n\rightarrow \infty}\left(3^n+4^n\right)^{\frac{1}{n}} = \lim_{n\rightarrow \infty}\left(4^n\right)^{\frac{1}{n}}\bigg[\bigg(\frac{3}{4}\bigg)^n+1\bigg]^{\frac{1}{n}} = 4$$
HINT: write your term in the form $$\sqrt[n]{3^n+4^n}=4\sqrt[n]{1+\left(\frac{3}{4}\right)^n}$$
$4^n \le 4^n+3^n \le 2*4^n$. Hence
$4 \le (4^n+3^n)^{1/n} \le 4*2^{1/n}$
Now: $n \to \infty$