Let $\mathbb{S}^2$ denote the unit sphere in $\mathbb{R}^3$. Let $f:\mathbb{S}^2 \to \mathbb{R}^4$ be defined by $f(x,y,z)=(x^2-y^2,xy,yz,zx)$.
Prove that $f$ determines a continuous map $\tilde{f}: \mathbb{R}P^2 \to \mathbb{R}^4$ where $\mathbb{R}P^2$ is the real projective plane. $\tilde{f}$ is a homeomorphism onto a topological subspace of $\mathbb{R}^4$.
I know $\mathbb{R}P^2$ is homeomorphic to the quotient space $\mathbb{S}^2/R$ where $R$ identifies each pair of antipodal points in $\mathbb{S}^2$. Then I have a quotient map $p:\mathbb{S}^2\to \mathbb{R}P^2$. Then $\tilde{f}=fp^{-1}$?